Category Archives: PaaS

PaaS lets you pick the right tool for the job, without having to worry about the additional operational complexity

In a recent blog post, Dan McKinley explains “Why MongoDB Never Worked Out at Etsy“. In short, the usefulness of using MongoDB in addition to their existing MySQL didn’t justify the additional operational complexity of managing another infrastructure service.

This highlights the least appreciated benefit of PaaS: PaaS lets you pick the right tool for the job, without having to worry about the additional operational complexity.

I tried to explain this a year ago in this InfoQ article. But the title was cringe-worthy and the article was too long.

So this blog will be short. I even made the main point bold; and put it in the title.

 

Comments Off on PaaS lets you pick the right tool for the job, without having to worry about the additional operational complexity

Filed under Cloud Computing, PaaS, Uncategorized, Utility computing

Come for the PaaS Functional Model, stay for the Cloud Operational Model

The Functional Model of PaaS is nice, but the Operational Model matters more.

Let’s first define these terms.

The Functional Model is what the platform does for you. For example, in the case of AWS S3, it means storing objects and making them accessible via HTTP.

The Operational Model is how you consume the platform service. How you request it, how you manage it, how much it costs, basically the total sum of the responsibility you have to accept if you use the features in the Functional Model. In the case of S3, the Operational Model is made of an API/UI to manage it, a bill that comes every month, and a support channel which depends on the contract you bought.

The Operational Model is where the S (“service”) in “PaaS” takes over from the P (“platform”). The Operational Model is not always as glamorous as new runtime features. But it’s what makes Cloud Cloud. If a provider doesn’t offer the specific platform feature your application developers desire, you can work around it. Either by using a slightly-less optimal approach or by building the feature yourself on top of lower-level building blocks (as Netflix did with Cassandra on EC2 before DynamoDB was an option). But if your provider doesn’t offer an Operational Model that supports your processes and business requirements, then you’re getting a hipster’s app server, not a real PaaS. It doesn’t matter how easy it was to put together a proof-of-concept on top of that PaaS if using it in production is playing Russian roulette with your business.

If the Cloud Operational Model is so important, what defines it and what makes a good Operational Model? In short, the Operational Model must be able to integrate with the consumer’s key processes: the business processes, the development processes, the IT processes, the customer support processes, the compliance processes, etc.

To make things more concrete, here are some of the key aspects of the Operational Model.

Deployment / configuration / management

I won’t spend much time on this one, as it’s the most understood aspect. Most Clouds offer both a UI and an API to let you provision and control the artifacts (e.g. VMs, application containers, etc) via which you access the PaaS functional interface. But, while necessary, this API is only a piece of a complete operational interface.

Support

What happens when things go wrong? What support channels do you have access to? Every Cloud provider will show you a list of support options, but what’s really behind these options? And do they have the capability (technical and logistical) to handle all your issues? Do they have deep expertise in all the software components that make up their infrastructure (especially in PaaS) from top to bottom? Do they run their own datacenter or do they themselves rely on a customer support channel for any issue at that level?

SLAs

I personally think discussions around SLAs are overblown (it seems like people try to reduce the entire Cloud Operational Model to a provisioning API plus an SLA, which is comically simplistic). But SLAs are indeed part of the Operational Model.

Infrastructure change management

It’s very nice how, in a PaaS setting, the Cloud provider takes care of all change management tasks (including patching) for the infrastructure. But the fact that your Cloud provider and you agree on this doesn’t neutralize Murphy’s law any more than me wearing Michael Jordan sneakers neutralizes the law of gravity when I (try to) dunk.

In other words, if a patch or update is worth testing in a staging environment if you were to apply it on-premise, what makes you think that it’s less likely to cause a problem if it’s the Cloud provider who rolls it out? Sure, in most cases it will work just fine and you can sing the praise of “NoOps”. Until the day when things go wrong, your users are affected and you’re taken completely off-guard. Good luck debugging that problem, when you don’t even know that an infrastructure change is being rolled out and when it might not even have been rolled out uniformly across all instances of your application.

How is that handled in your provider’s Operational Model? Do you have visibility into the change schedule? Do you have the option to test your application on the new infrastructure or to at least influence in any way how and when the change gets rolled out to your instances?

Note: I’ve covered this in more details before and so has Chris Hoff.

Diagnostic

Developers have assembled a panoply of diagnostic tools (memory/thread analysis, BTM, user experience, logging, tracing…) for the on-premise model. Many of these won’t work in PaaS settings because they require a console on the local machine, or an agent, or a specific port open, or a specific feature enabled in the runtime. But the need doesn’t go away. How does your PaaS Operational Model support that process?

Customer support

You’re a customer of your Cloud, but you have customers of your own and you have to support them. Do you have the tools to react to their issues involving your Cloud-deployed application? Can you link their service requests with the related actions and data exposed via your Cloud’s operational interface?

Security / compliance

Security is part of what a Cloud provider has to worry about. The problem is, it’s a very relative concept. The issue is not what security the Cloud provider needs, it’s what security its customers need. They have requirements. They have mandates. They have regulations and audits. In short, they have their own security processes. The key question, from their perspective, is not whether the provider’s security is “good”, but whether it accommodates their own security process. Which is why security is not a “trust us” black box (I don’t think anyone has coined “NoSec” yet, but it can’t be far behind “NoOps”) but an integral part of the Cloud Operational Model.

Business management

The oft-repeated mantra is that Cloud replaces capital expenses (CapExp) with operational expenses (OpEx). There’s a lot more to it than that, but it surely contributes a lot to OpEx and that needs to be managed. How does the Cloud Operational Model support this? Are buyer-side roles clearly identified (who can create an account, who can deploy a service instance, who can manage a deployed instance, etc) and do they map well to the organizational structure of the consumer organization? Can charges be segmented and attributed to various cost centers? Can quotas be set? Can consumption/cost projections be run?

We all (at least those of us who aren’t accountants) love a great story about how some employee used a credit card to get from the Cloud something that the normal corporate process would not allow (or at too high a cost). These are fun for a while, but it’s not sustainable. This doesn’t mean organizations will not be able to take advantage of the flexibility of Cloud, but they will only be able to do it if the Cloud Operational Model provides the needed support to meet the requirements of internal control processes.

Conclusion

Some of the ways in which the Cloud Operational Model materializes can be unexpected. They can seem old-fashioned. Let’s take Amazon Web Services (AWS) as an example. When they started, ownership of AWS resources was tied to an individual user’s Amazon account. That’s a big Operational Model no-no. They’ve moved past that point. As an illustration of how the Operational Model materializes, here are some of the features that are part of Amazon’s:

  • You can Fedex a drive and have Amazon load the data to S3.
  • You can optimize your costs for flexible workloads via spot instances.
  • The monitoring console (and API) will let you know ahead of time (when possible) which instances need to be rebooted and which will need to be terminated because they run on a soon-to-be-decommissioned server. Now you could argue that it’s a limitation of the AWS platform (lack of live migration) but that’s not the point here. Limitations exists and the role of the Operational Model is to provide the tools to handle them in an acceptable way.
  • Amazon has a program to put customers in touch with qualified System Integrators.
  • You can use your Amazon support channel for questions related to some 3rd party software (though I don’t know what the depth of that support is).
  • To support your security and compliance requirements, AWS support multi-factor authentication and has achieved some certifications and accreditations.
  • Instance status checks can help streamline your diagnostic flows.

These Operational Model features don’t generate nearly as much discussion as new Functional Model features (“oh, look, a NoSQL AWS service!”) . That’s OK. The Operational Model doesn’t seek the limelight.

Business applications are involved, in some form, in almost every activity taking place in a company. Those activities take many different forms, from a developer debugging an application to an executive examining operational expenses. The PaaS Operational Model must meet their needs.

2 Comments

Filed under Amazon, API, Application Mgmt, Automation, Business, Business Process, Cloud Computing, Everything, Manageability, Mgmt integration, PaaS, Utility computing

Everything is PaaSible

That’s the title of an article I wrote for InfoQ and which went live today.

If you can get past the punny title you’ll read about the following points:

  • In traditional (and IaaS) environments, many available application infrastructure features remain rarely used because of the cost (perceived or real) or adding them to the operational environment.
  • Most PaaS environments of today don’t even let you make use of these features, at any cost, because of  constraints imposed by PaaS providers for the sake of simplifying and streamlining their operations.
  • In the future, PaaS will not only make these available but available at a negligible incremental operational cost.
  • Even beyond that, PaaS will make available application services that are, in traditional settings, completely out of scope for the application programmer. Early examples include CDN, DNS and loab balancing services offered, for example, by Amazon. An application developer in most traditional data centers would have to jump through endless hoops if she wanted to control these services within the application. I believe that these network-related services are just the low hanging fruits and many more once-unthinkable infrastructure services will become programmable as part of the application.

PaaS will become less about “hosting” and more about offering application services. In other words, going back to the formula I proposed on Twitter:

Cloud = Hosting + SOA

IaaS is a lot more “hosting” than SOA, PaaS is a lot more “SOA” (application infrastructure services available via APIs) than “hosting”.

You can read the full article for more.

Comments Off on Everything is PaaSible

Filed under API, Application Mgmt, Articles, Cloud Computing, Everything, Manageability, Mgmt integration, Middleware, PaaS, Utility computing

Why is there more public PaaS than private PaaS?

I asked on Twitter: “For IaaS there’s a fair mix of public and private. But PaaS seems very titled towards public right now. Any idea why?”

Here are the responses I collected:

@wrecks47 challenged the proposition:

  • I see the opposite. I observe much more activity in private PaaS rather than public PaaS.

Others seemed to agree and offered these explanations:

@reillyusa and @mfratto think it’s because it’s too hard to build a private PaaS:

  • Complex and not too many understandable reference architectures – personified by why Azure appliance is taking so long to appear.
  • much harder to build a PaaS in house?

@ryanprociuk and @garnaat think PaaS are very specific (though it’s not clear to me how that explains its lacks of private deployment):

  • PaaS may not be as generic as IaaS, specific to a technical solution. IMO
  • I think a private PaaS might be very domain-specific. Current PaaS target a narrow range of scale which can be generic.

@somic thinks that in a private setting (presumably without specialized app services) there isn’t much to gain by offering PaaS versus letting people run a container on top of IaaS (though this begs the question why don’t private PaaS provide these services like public PaaS do):

  • imho today’s paas, in a private deployment, is just a webapp container – not revolutionary enough to justify a move

@robcheng thinks it’s mostly politics:

  • the same agendas that cause companies to embrace private cloud make them suspicious of PaaS (whose jobs/teams become obsolete?)

@cloud_borat‘s interpretation is just that middleware marketers aren’t as savvy as their infrastructure counterparts.

  • our expert analyst Igor say that because app server marketing people suck more and not label appserver as private PaaS

Thanks all!

[UPDATED 2011/7/5: This was originally a Google+ post, but it really belongs as a blog post here so I am glad this is where you are reading it. The next post explains why.]

2 Comments

Filed under Cloud Computing, Everything, IaaS, Middleware, PaaS

CloudFormation in context

I’ve been very positive about AWS CloudFormation (both in tweet and blog form) since its announcement . I want to clarify that it’s not the technology that excites me. There’s nothing earth-shattering in it. CloudFormation only covers deployment and doesn’t help you with configuration, monitoring, diagnostic and ongoing lifecycle. It’s been done before (including probably a half-dozen times within IBM alone, I would guess). We’ve had much more powerful and flexible frameworks for a long time (I can’t even remember when SmartFrog first came out). And we’ve had frameworks with better tools (though history suggests that tools for CloudFormation are already in the works, not necessarily inside Amazon).

Here are some non-technical reasons why I tweeted that “I have a feeling that the AWS CloudFormation format might become an even more fundamental de-facto standard than the EC2 API” even before trying it out.

It’s simple to use. There are two main reasons for this (and the fact that it uses JSON rather than XML is not one of them):
– It only support a small set of features
– It “hard-codes” resource types (e.g. EC2, Beanstalk, RDS…) rather than focusing on an abstract and extensible mechanism

It combines a format and an API. You’d think it’s obvious that the two are complementary. What can you do with a format if you don’t have an API to exchange documents in that format? Well, turns out there are lots of free-floating model formats out there for which there is no defined API. And they are still wondering why they never saw any adoption.

It merges IaaS and PaaS. AWS has always defied the “IaaS vs. PaaS” view of the Cloud. By bridging both, CloudFormation is a great way to provide a smooth transition. I expect most of the early templates to be very EC2-centric (are as most AWS deployments) and over time to move to a pattern in which EC2 resources are just used for what doesn’t fit in more specialized containers).

It comes at the right time. It picks the low-hanging fruits of the AWS automation ecosystem. The evangelism and proof of concept for templatized deployments have already taken place.

It provides a natural grouping of the various AWS resources you are currently consuming. They are now part of an explicit deployment context.

It’s free (the resources provisioned are not free, of course, but the fact that they came out of a CloudFormation deployment doesn’t change the cost).

Comments Off on CloudFormation in context

Filed under Amazon, Application Mgmt, Automation, Cloud Computing, Everything, Mgmt integration, Modeling, PaaS, Specs, Utility computing

AWS CloudFormation is the iPhone of Cloud services

Expanding on tweet that I wrote soon after the announcement of AWS CloudFormation.

The iPhone unifies the GPS, phone, PDA, camera and camcorder. CloudFormation does the same for infrastructure services (VMs, volumes, network…) and some platform services (Beanstalk, RDS, SimpleDB, SQS, SNS…). You don’t think about whether you should grab a phone or a PDA, you grab an iPhone and start using the feature you need. It’s the default tool. Similarly with CloudFormation, you won’t start by thinking about what AWS service you want to use. Rather, you grab a CloudFormation template and modify it as needed. The template (or the template editor) is the default tool.

The iPhone doesn’t just group features that used to be provided by many devices. It also allows these features to collaborate. It’s not that you get a PDA and a phone side-by-side in one device. You can press the “call” button from the “PDA” feature. CloudFormation doesn’t just bundle deployments to various AWS services, it wires them together.

Anyone can write apps for the iPhone. Anyone can write apps that use CloudFormation.

There’s an App Store for iPhone apps. On the CloudFormation side, it will probably come soon (right now Amazon has made templates available on S3, but that’s not a real store). Amazon has developed example templates for a set of common applications, but expect application authors to take ownership of that task soon. They’ll consider it one of their deliverables. Right next to the “download” button you’ll start seeing a “deploy to AWS” button. Guess which one will eventually be used the most?

It’s Apple’s platform and your applications have to comply with their policy. AWS is not as much of a control freak as Apple and doesn’t have an upfront approval process, but it has its terms of service and they too can get you kicked out.

The iPhone is not a standard platform (though you may consider it a de-facto standard). Same for AWS CloudFormation.

There are alternatives to the iPhone that define themselves primarily as being more open than it, mainly Android. Same for AWS with OpenStack (which probably will soon have its CloudFormation equivalent).

The iPhone infiltrated itself into corporations at the ground level, even if the CIO initially saw no reason to look beyond BlackBerry for corporate needs. Same with AWS.

Any other parallel? Any fundamental difference I missed?

1 Comment

Filed under Amazon, Application Mgmt, Automation, Cloud Computing, Everything, Mgmt integration, Modeling, OpenStack, PaaS, Portability, Specs, Tech, Utility computing, Virtual appliance

Nice incremental progress in Google App Engine SDK 1.4

When Google released version 1.3.8 of the Google App Engine SDK in October, they introduced an instance console, showing you how many instances are serving your application and some basic metrics about these instances. I wrote a blog to consider the implications of providing this level of visibility to application administrators. It also pointed out some shortcomings of this first version of the console.

The most glaring problem was that the console showed an “average latency” which was just a straight average of the latencies of all the instances, independently of the traffic they see. Which is a meaningless number.

Today, Google released an update to the SDK (1.4), and along with it some minor updates to the instance console. Except that, as you can see below, the screen capture in their announcement happens to show three instances that have processed exactly the same number of messages. Which means that we can’t tell whether they have fixed the “unweighted average” problem or not. Is this just by chance? Google, WTF? (which stands for “what’s the formula?”, of course).

I decided it was worth spending a few minutes to find the answer. I don’t have any app currently in use on GAE, but it doesn’t take much work to generate enough load to wake up one of my old apps and get it to spin a couple of instances. Here is the resulting console instance:

If you run the numbers, you can see that they’ve fixed that issue; the average latency is now weighted based on instance traffic. Thanks Google for listening.

Apparently, not all the updates have trickled down to my version of the instance console. The “requests”, “errors” and “age” columns are missing. I assume they’re on their way. Seeing the age of the instances, especially, is a nice addition, one of those I requested in my blog.

In the grand scheme of things, these minor updates to the console (which remains quite basic) are not the big news. The major announcement with SDK 1.4 is that the dreaded 30 seconds limit on execution time has been lifted for background tasks (those from Task Queue and Cron). It’s now a much more manageable 10 minutes. This doesn’t apply to the execution of Web requests served by your app.

Google App Engine has been under criticism recently, and that 30-second limit (along with reliability issues) figured prominently in the complains. Assuming the reliability issues are also coming under control, this update will go a long way towards addressing these issues.

Just so you realize how lucky you are if you are just now starting with Google App Engine, here are the kind of hoops you had to jump through, in the early days, to process any task that took a significant amount of time. This was done a year before the Cron and Task Queue features were added to GAE.

Another nice addition with SDK 1.4 is that you can now retrieve the source code of your application from Google’s servers. Of course you should never need that if you are rigorous and well-organized… Presumably this is only for Python since in the Java case Google’s servers never see the source code.

The steady progress of the GAE SDK continues.

1 Comment

Filed under Application Mgmt, Cloud Computing, Everything, Google, Google App Engine, IT Systems Mgmt, Manageability, Middleware, PaaS, Utility computing

Lifting the curtain on PaaS Cloud infrastructure (can you handle the truth?)

The promise of PaaS is that application owners don’t need to worry about the infrastructure that powers the application. They just provide application artifacts (e.g. WAR files) and everything else is taken care of. Backups. Scaling. Infrastructure patching. Network configuration. Geographic distribution. Etc. All these headaches are gone. Just pick from a menu of quality of service options (and the corresponding price list). Make your choice and forget about it.

In theory.

In practice no abstraction is leak-proof and the abstractions provided by PaaS environments are even more porous than average. The first goal of PaaS providers should be to shore them up, in order to deliver on the PaaS value proposition of simplification. But at some point you also have to acknowledge that there are some irreducible leaks and take pragmatic steps to help application administrators deal with them. The worst thing you can do is have application owners suffer from a leaky abstraction and refuse to even acknowledge it because it breaks your nice mental model.

Google App Engine (GAE) gives us a nice and simple example. When you first deploy an application on GAE, it is deployed as just one instance. As traffic increases, a second instance comes up to handle the load. Then a third. If traffic decreases, one instance may disappear. Or one of them may just go away for no reason (that you’re aware of).

It would be nice if you could deploy your application on what looks like a single, infinitely scalable, machine and not ever have to worry about horizontal scale-out. But that’s just not possible (at a reasonable cost) so Google doesn’t try particularly hard to hide the fact that many instances can be involved. You can choose to ignore that fact and your application will still work. But you’ll notice that some requests take a lot more time to complete than others (which is typically the case for the first request to hit a new instance). And some requests will find an empty local cache even though your application has had uninterrupted traffic. If you choose to live with the “one infinitely scalable machine” simplification, these are inexplicable and unpredictable events.

Last week, as part of the release of the GAE SDK 1.3.8, Google went one step further in acknowledging that several instances can serve your application, and helping you deal with it. They now give you a console (pictured below) which shows the instances currently serving your application.

I am very glad that they added this console, because it clearly puts on the table the question of how much your PaaS provider should open the kimono. What’s the right amount of visibility, somewhere between “one infinitely scalable computer” and giving you fan speeds and CPU temperature?

I don’t know what the answer is, but unfortunately I am pretty sure this console is not it. It is supposed to be useful “in debugging your application and also understanding its performance characteristics“. Hmm, how so exactly? Not only is this console very simple, it’s almost useless. Let me enumerate the ways.

Misleading

Actually it’s worse than useless, it’s misleading. As we can see on the screen shot, two of the instances saw no traffic during the collection period (which, BTW, we don’t know the length of), while the third one did all the work. At the top, we see an “average latency” value. Averaging latency across instances is meaningless if you don’t weight it properly. In this case, all the requests went to the instance that had an average latency of 1709ms, but apparently the overall average latency of the application is 569.7ms (yes, that’s 1709/3). Swell.

No instance identification

What happens when the console is refreshed? Maybe there will only be two instances. How do I know which one went away? Or say there are still three, how do I know these are the same three? For all I know it could be one old instance and two new ones. The single most important data point (from the application administrator’s perspective) is when a new instance comes up. I have no way, in this UI, to know reliably when that happens: no instance identification, no indication of the age of an instance.

Average memory

So we get the average memory per instance. What are we supposed to do with that information? What’s a good number, what’s a bad number? How much memory is available? Is my app memory-bound, CPU-bound or IO-bound on this instance?

Configuration management

As I have described before, change and configuration management in a PaaS setting is a thorny problem. This console doesn’t tackle it. Nowhere does it say which version of the GAE platform each instance is running. Google announces GAE SDK releases (the bits you download), but these releases are mostly made of new platform features, so they imply a corresponding update to Google’s servers. That can’t happen instantly, there must be some kind of roll-out (whether the instances can be hot-patched or need to be recycled). Which means that the instances of my application are transitioned from one platform version to another (and presumably that at a given point in time all the instances of my application may not be using the same platform version). Maybe that’s the source of my problem. Wouldn’t it be nice if I knew which platform version an instance runs? Wouldn’t it be nice if my log files included that? Wouldn’t it be nice if I could request an app to run on a specific platform version for debugging purpose? Sure, in theory all the upgrades are backward-compatible, so it “shouldn’t matter”. But as explained above, “the worst thing you can do is have application owners suffer from a leaky abstraction and refuse to even acknowledge it“.

OK, so the instance monitoring console Google just rolled out is seriously lacking. As is too often the case with IT monitoring systems, it reports what is convenient to collect, not what is useful. I’m sure they’ll fix it over time. What this console does well (and really the main point of this blog) is illustrate the challenge of how much information about the underlying infrastructure should be surfaced.

Surface too little and you leave application administrators powerless. Surface more data but no control and you’ll leave them frustrated. Surface some controls (e.g. a way to configure the scaling out strategy) and you’ve taken away some of the PaaS simplicity and also added constraints to your infrastructure management strategy, making it potentially less efficient. If you go down that route, you can end up with the other flavor of PaaS, the IaaS-based PaaS in which you have an automated way to create a deployment but what you hand back to the application administrator is a set of VMs to manage.

That IaaS-centric PaaS is a well-understood beast, to which many existing tools and management practices can be applied. The “pure PaaS” approach pioneered by GAE is much more of a terra incognita from a management perspective. I don’t know, for example, whether exposing the platform version of each instance, as described above, is a good idea. How leaky is the “platform upgrades are always backward-compatible” assumption? Google, and others, are experimenting with the right abstraction level, APIs, tools, and processes to expose to application administrators. That’s how we’ll find out.

1 Comment

Filed under Application Mgmt, Automation, Cloud Computing, Everything, Google App Engine, IT Systems Mgmt, Manageability, Mgmt integration, Middleware, PaaS, Utility computing

The PaaS Lament: In the Cloud, application administrators should administrate applications

Some organizations just have “systems administrators” in charges of their applications. Others call out an “application administrator” role but it is usually overloaded: it doesn’t separate the application platform administrator from the true application administrator. The first one is in charge of the application runtime infrastructure (e.g. the application server, SOA tools, MDM, IdM, message bus, etc). The second is in charge of the applications themselves (e.g. Java applications and the various artifacts that are used to customize the middleware stack to serve the application).

In effect, I am describing something close to the split between the DBA and the application administrators. The first step is to turn this duo (app admin, DBA) into a triplet (app admin, platform admin, DBA). That would be progress, but such a triplet is not actually what I am really after as it is too strongly tied to a traditional 3-tier architecture. What we really need is a first-order separation between the application administrator and the infrastructure administrators (not the plural). And then, if needed, a second-order split between a handful of different infrastructure administrators, one of which may be a DBA (or a DBA++, having expanded to all data storage services, not just relational), another of which may be an application platform administrator.

There are two reasons for the current unfortunate amalgam of the “application administrator” and “application platform administrator” roles. A bad one and a good one.

The bad reason is a shortcomings of the majority of middleware products. While they generally do a good job on performance, reliability and developer productivity, they generally do a poor job at providing a clean separation of the performance/administration functions that are relevant to the runtime and those that are relevant to the deployed applications. Their usual role definitions are more structured along the lines of what actions you can perform rather than on what entities you can perform them. From a runtime perspective, the applications are not well isolated from one another either, which means that in real life you have to consider the entire system (the middleware and all deployed applications) if you want to make changes in a safe way.

The good reason for the current lack of separation between application administrators and middleware administrators is that middleware products have generally done a good job of supporting development innovation and optimization. Frameworks appear and evolve to respond to the challenges encountered by developers. Knobs and dials are exposed which allow heavy customization of the runtime to meet the performance and feature needs of a specific application. With developers driving what middleware is used and how it is used, it’s a natural consequence that the middleware is managed in tight correlation with how the application is managed.

Just like there is tension between DBAs and the “application people” (application administrators and/or developers), there is an inherent tension in the split I am advocating between application management and application platform management. The tension flows from the previous paragraph (the “good reason” for the current amalgam): a split between application administrators and application platform administrators would have the downside of dampening application platform innovation. Or rather it redirects it, in a mutation not unlike the move from artisans to industry. Rather than focusing on highly-specialized frameworks and highly-tuned runtimes, the application platform innovation is redirected towards the goals of extreme cost efficiency, high reliability, consistent security and scalability-by-default. These become the main objectives of the application platform administrator. In that perspective, the focus of the application architect and the application administrator needs to switch from taking advantage of the customizability of the runtime to optimize local-node performance towards taking advantage of the dynamism of the application platform to optimize for scalability and economy.

Innovation in terms of new frameworks and programming models takes a hit in that model, but there are ways to compensate. The services offered by the platform can be at different levels of generality. The more generic ones can be used to host innovative application frameworks and tools. For example, a highly-specialized service like an identity management system is hard to use for another purpose, but on the other hand a JVM can be used to host not just business applications but also platform-like things like Hadoop. They can run in the “application space” until they are mature enough to be incorporated in the “application platform space” and become the responsibility of the application platform administrator.

The need to keep a door open for innovation is part of why, as much as I believe in PaaS, I don’t think IaaS is going away anytime soon. Not only do we need VMs for backward-looking legacy apps, we also need polyvalent platforms, like a VM, for forward-looking purposes, to allow developers to influence platform innovation, based on their needs and ideas.

Forget the guillotine, maybe I should carry an axe around. That may help get the point across, that I want to slice application administrators in two, head to toe. PaaS is not a question of runtime. It’s a question of administrative roles.

Comments Off on The PaaS Lament: In the Cloud, application administrators should administrate applications

Filed under Application Mgmt, Cloud Computing, Everything, IT Systems Mgmt, Manageability, Mgmt integration, Middleware, PaaS, Utility computing, Virtualization

The necessity of PaaS: Will Microsoft be the Singapore of Cloud Computing?

From ancient Mesopotamia to, more recently, Holland, Switzerland, Japan, Singapore and Korea, the success of many societies has been in part credited to their lack of natural resources. The theory being that it motivated them to rely on human capital, commerce and innovation rather than resource extraction. This approach eventually put them ahead of their better-endowed neighbors.

A similar dynamic may well propel Microsoft ahead in PaaS (Platform as a Service): IaaS with Windows is so painful that it may force Microsoft to focus on PaaS. The motivation is strong to “go up the stack” when the alternative is to cultivate the arid land of Windows-based IaaS.

I should disclose that I work for one of Microsoft’s main competitors, Oracle (though this blog only represents personal opinions), and that I am not an expert Windows system administrator. But I have enough experience to have seen some of the many reasons why Windows feels like a much less IaaS-friendly environment than Linux: e.g. the lack of SSH, the cumbersomeness of RDP, the constraints of the Windows license enforcement system, the Windows update mechanism, the immaturity of scripting, the difficulty of managing Windows from non-Windows machines (despite WS-Management), etc. For a simple illustration, go to EC2 and compare, between a Windows AMI and a Linux AMI, the steps (and time) needed to get from selecting an image to the point where you’re logged in and in control of a VM. And if you think that’s bad, things get even worse when we’re not just talking about a few long-lived Windows server instances in the Cloud but a highly dynamic environment in which all steps have to be automated and repeatable.

I am not saying that there aren’t ways around all this, just like it’s not impossible to grow grapes in Holland. It’s just usually not worth the effort. This recent post by RighScale illustrates both how hard it is but also that it is possible if you’re determined. The question is what benefits you get from Windows guests in IaaS and whether they justify the extra work. And also the additional license fee (while many of the issues are technical, others stem more from Microsoft’s refusal to acknowledge that the OS is a commodity). [Side note: this discussion is about Windows as a guest OS and not about the comparative virtues of Hyper-V, Xen-based hypervisors and VMWare.]

Under the DSI banner, Microsoft has been working for a while on improving the management/automation infrastructure for Windows, with tools like PowerShell (which I like a lot). These efforts pre-date the Cloud wave but definitely help Windows try to hold it own on the IaaS battleground. Still, it’s an uphill battle compared with Linux. So it makes perfect sense for Microsoft to move the battle to PaaS.

Just like commerce and innovation will, in the long term, bring more prosperity than focusing on mining and agriculture, PaaS will, in the long term, yield more benefits than IaaS. Even though it’s harder at first. That’s the good news for Microsoft.

On the other hand, lack of natural resources is not a guarantee of success either (as many poor desertic countries can testify) and Microsoft will have to fight to be successful in PaaS. But the work on Azure and many research efforts, like the “next-generation programming model for the cloud” (codename “Orleans”) that Mary Jo Foley revealed today, indicate that they are taking it very seriously. Their approach is not restricted by a VM-centric vision, which is often tempting for hypervisor and OS vendors. Microsoft’s move to PaaS is also facilitated by the fact that, while system administration and automation may not be a strength, development tools and application platforms are.

The forward-compatible Cloud will soon overshadow the backward-compatible Cloud and I expect Microsoft to play a role in it. They have to.

10 Comments

Filed under Application Mgmt, Automation, Azure, Cloud Computing, DevOps, Everything, IT Systems Mgmt, Linux, Manageability, Mgmt integration, Microsoft, Middleware, Oslo, PaaS, Research, Utility computing, WS-Management

Flavors of PaaS

How many flavors of PaaS do we need?

  • PaaS for business apps
  • PaaS for toy apps (simple form-based CRUD) and simple business front ends (e.g. restaurant web sites)
  • PaaS for games, mash-ups and social apps
  • PaaS for multimedia delivery and live streams
  • PaaS for high performance and scientific computing
  • PaaS for spamming, hacking and other illegal activities (Zombies as a Service)
  • Other?

BTW, doesn’t “flavors of PaaS” sound like the name of a perfume? At least when I say it with my French accent it does.

6 Comments

Filed under Application Mgmt, Cloud Computing, Everything, PaaS, Utility computing

PaaS portability challenges and the VMforce example

The VMforce announcement is a great step for SalesForce, in large part because it lets them address a recurring concern about the force.com PaaS offering: the lack of portability of Apex applications. Now they can be written using Java and Spring instead. A great illustration of how painful this issue was for SalesForce is to see the contortions that Peter Coffee goes through just to acknowledge it: “On the downside, a project might be delayed by debates—some in good faith, others driven by vendor FUD—over the perception of platform lock-in. Political barriers, far more than technical barriers, have likely delayed many organizations’ return on the advantages of the cloud”. The issue is not lock-in it’s the potential delays that may come from the perception of lock-in. Poetic.

Similarly, portability between clouds is also a big theme in Steve Herrod’s blog covering VMforce as illustrated by the figure below. The message is that “write once run anywhere” is coming to the Cloud.

Because this is such a big part of the VMforce value proposition, both from the SalesForce and the VMWare/SpringSource side (as well as for PaaS in general), it’s worth looking at the portability aspect in more details. At least to the extent that we can do so based on this pre-announcement (VMforce is not open for developers yet). And while I am taking VMforce as an example, all the considerations below apply to any enterprise PaaS offering. VMforce just happens to be one of the brave pioneers, willing to take a first step into the jungle.

Beyond the use of Java as a programming language and Spring as a framework, the portability also comes from the supporting tools. This is something I did not cover in my initial analysis of VMforce but that Michael Cote covers well on his blog and Carl Brooks in his comment. Unlike the more general considerations in my previous post, these matters of tooling are hard to discuss until the tools are actually out. We can describe what they “could”, “should” and “would” do all day long, but in the end we need to look at the application in practice and see what, if anything, needs to change when I redirect my deployment target from one cloud to the other. As SalesForce’s Umit Yalcinalp commented, “the details are going to be forthcoming in the coming months and it is too early to speculate”.

So rather than speculating on what VMforce tooling will do, I’ll describe what portability questions any PaaS platform would have to address (or explicitly decline to address).

Code portability

That’s the easiest to address. Thanks to Java, the runtime portability problem for the core language is pretty much solved. Still, moving applications around require changes to way the application communicates with its infrastructure. Can your libraries and frameworks for data access and identity, for example, successfully encapsulate and hide the different kinds of data/identity stores behind them? Even when the stores are functionally equivalent (e.g. SQL, LDAP), they may have operational differences that matter for an enterprise application. Especially if the database is delivered (and paid for) as a service. I may well design my application differently depending on whether I am charged by the amount of data in the DB, by the number of requests to the DB, by the quantity of app-to-DB traffic or by the total processing time of my requests in the DB. Apparently force.com considers the number of “database objects” in its pricing plans and going over 200 pushes you from the “Enterprise” version to the more expensive “Unlimited” version. If I run against my local relational database I don’t think twice about having 201 “database objects”. But if I run in force.com and I otherwise can live within the limits of the “Enterprise” version I’d probably be tempted to slightly alter my data model to fit under 200 objects. The example is borderline silly, but the underlying truth is that not all differences in application infrastructure can be automatically encapsulated by libraries.

While code portability is a solvable problem for a reasonably large set of use cases, things get hairier for the more demanding applications. A large part of the PaaS value proposition is contingent on the willingness to give up some low-level optimizations. This, and harder portability in some cases, may just have to be part of the cost of running demanding applications in a PaaS environment. Or just keep these off PaaS for now. This is part of the backward-compatible versus forward compatible Cloud dilemma.

Data portability

I have covered data portability in the previous entry, in response to Steve Herrod’s comment that “you should be able to extract the code from the cloud it currently runs in and move it, along with its data, to another cloud choice”. Your data in the force.com database can already be moved somewhere else… as long as you’re willing to write code to get it and perform any needed transformation. In theory, any data that you can read is data that you can move (thus fulfilling Steve’s promise). The question is at what cost. Presumably Steve is referring to data migration tools that VMWare will build (or acquire) and make part of its cloud enablement platform. Another way in which VMWare is trying to assemble a more complete middleware portfolio (see Oracle ODI for an example of a complete data integration offering, which goes far beyond ETL).

There is a subtle difference between the intrinsic portability of Java (which will run in any JRE, modulo JDK version) and the extrinsic portability of data which can in theory be moved anywhere but each place you move it to may require a different process. A car and an oak armoire are both “portable”, but one is designed for moving while the other will only move if you bring a truck and two strong guys.

Application service portability

I covered this in my previous entry and Bob Warfield summarized it as “take advantage of all those juicy services and it will be hard to back out of that platform, Java or no Java”. He is referring to all the platform services (search, reporting, mobile, integration, BPM, IdM, administration) that make a large part of the force.com value proposition. They won’t be waiting for you in your private cloud (though some may be remotely invocable, depending on how SalesForce wants to play its cards). Applications that depend on them will have to be changed, at least until we have standards interfaces for all these services (don’t hold your breath).

Management portability

Even if you can seamlessly migrate your application and your data from your internal servers to force.com, what do you think is going to happen to your management console, especially if it uses operating system agents? These agents are not coming along for the ride, that’s for sure. Are you going to tell your administrators that rather than having a centralized configuration/monitoring/event console they are going to have to look at cute “monitoring” web pages for each application? And all the transaction tracing, event correlation, configuration policy and end-user monitoring features they were relying on are unfortunate victims of the relentless march of progress? Good luck with that sale.

VMWare’s answer will probably be that they will eventually provide you with all the management capabilities that you need. And it’s a fair one, along the lines of the “Application-to-Disk Management” message at the recent launch of Oracle Enterprise Manager 11G. With the difference that EM is not the only way to manage a top-to-bottom Oracle stack, just the one that we think is the best. BMC and HP aren’t locked out.

VMWare and SpringSource (+Hyperic) could indeed theoretically assemble a full-fledged management solution. But this doesn’t happen overnight, even with acquisitions as I know from experience both at HP Software and currently at Oracle. Integration (of management domains across the stack, of acquired application management products, of support data/services from oracle.com) is one of the main advances in Enterprise Manager 11G and it took work.

And even then, this leads to the next logical question. If you can move from cloud to cloud but you are forced to use VMWare development, deployment and management tools, haven’t you traded one lock-in problem for another?

Not to mention that your portability between clouds, if it depends on VMWare tools, is limited to VMWare-powered clouds (private or public). In effect, there are now three levels of portability:

  • not portable (only runs on VMforce)
  • portable to any cloud (public or private) built using VMWare infrastructure
  • portable to any Java/Spring Cloud platform

Is your application portable the way cash is portable, or the way a gift card is portable (across stores of a retail chain)?

If this reminds you of the java portability debates of the early days of Enterprise Java that’s no surprise. Remember, we’re replaying the tape.

4 Comments

Filed under Application Mgmt, Cloud Computing, Everything, IT Systems Mgmt, Manageability, Mgmt integration, Middleware, PaaS, Portability, Spring, Standards, Tech, Utility computing, VMforce, VMware

Analyzing the VMforce announcement

Let’s start with the disclosures: by most interpretations I work for a competitor to what Salesforce.com and VMWare are trying to do with VMforce. And all I know about VMforce is what I read in a few authoritative blogs by VMWare’s Steve Herrod, VMWare/SpringSource’s Rod Johnson and Salesforce’s Anshu Sharma. So no hard feeling if you jump off right now.

Overall, I like what I see. Let me put it this way. I am now a lot more likely to write an application on force.com than I was last week. How could this not be a good thing for SalesForce, me and others like me?

On the other hand, this is also not the major announcement that the “VMforce is coming” drum-roll had tried to make us expect. If you fell for it, then I guess you can be disappointed. I didn’t and I’m not (Phil Wainewright fell for it and yet isn’t disappointed, asserting that “VMforce.com redefines the PaaS landscape” for reasons not entirely clear to me even after reading his article).

The new thing is that force.com now supports an additional runtime, in addition to Apex. That new runtime uses the Java language, with the constraint that it is used via the Spring framework. Which is familiar territory to many developers. That’s it. That’s the VMforce announcement for all practical purposes from a user’s perspective. It’s a great step forward for force.com which was hampered by the non-standard nature of Apex, but it’s just a new runtime. All the other benefits that Anshu Sharma lists in his blog (search, reporting, mobile, integration, BPM, IdM, administration) are not new. They are the platform services that force.com offers to application writers, whether they use Apex or the new Java/Spring runtime.

It’s important to realize that there are two main parts to a full PaaS platform like force.com or Google App Engine. First there are application runtimes (Apex and now Java for force.com, Python and Java for GAE). They are language-dependent and you can have several of them to support different programming languages. Second are the platform services (reports, mobile, BPM, IdM etc for force.com as we saw above, mostly IdM for Google at this point) which are mostly language agnostic (beyond a library used to access them). I think of data storage (e.g. mySQL, force.com database, Google DataStore) as part of the runtime, but it’s on the edge of the grey zone. A third category is made of actual application services (e.g. the CRM web services out of SalesForce.com or the application services out of Google Apps) which I tend not to consider part of PaaS but again there are gray zones between application support services and application services. E.g. how domain-specific does your rule engine have to be before it moves from one category to the other?

As Umit Yalcinalp (who works for SalesForce) told me on Twitter “regardless of the runtime the devs using the Force.com db will get the same platform benefits, chatter, workflow, analytics”. What I called the platform services above. Which, really, is where most of the PaaS value lies anyway. A language runtime is just a starting point.

So where are VMWare and SpringSource in this picture? Well, from the point of view of the user nowhere, really. SalesForce could have built this platform themselves, using the Spring framework on top of Tomcat, WebLogic, JBoss… Itself running on any OS they want. With or without a hypervisor. These are all implementation details and are SalesForce’s problem, not ours as application developers.

It so happens that they have chosen to run this as a partnership with VMWare/SpringSource which makes a lot of sense from a portfolio/expertise perspective, of course. But this choice is not visible to the application developer making use of this platform. And it shouldn’t be. That’s the whole point of PaaS after all, that we don’t have to care.

But VMWare and SpringSource really want us to know that they are there, so Rod Johnson leads by lifting the curtain and explaining that:

“VMforce uses the Force.com physical infrastructure to run vSphere with a special customized vCloud layer that allows for seamless scaling and management. Above this layer VMforce runs SpringSource tc Server instances that provide the execution environment for the enterprise applications that run on VMforce.”

[Side note: notice what’s missing? The operating system. It’s there of course, most likely some Linux distribution but Rod glances over it, maybe because it’s a missing link in VMWare’s “we have all the pieces” story; unlike Oracle who can provide one or, even better, do without.  Just saying…]

VMWare wants us to know they are under the covers because of course they have much larger aspirations than to be a provider to SalesForce. They want to use this as a proof point to sell their SpringSource+VMWare stack in other settings, such as private clouds and other public cloud providers (modulo whatever exclusivity period may be in their contract with SalesForce). And VMforce, if it works well when it launches, is a great validation for this strategy. It’s natural that they want people to know that they are behind the curtain and can be called on to replicate this elsewhere.

But let’s be clear about what part they can replicate. It’s the Java/Spring language runtime and its underlying infrastructure. Not the platform services that are part of the SalesForce platform. Not an IdM solution, not a rules engine, not a business process engine, etc. We can expect that they are hard at work trying to fill these gaps, as the RabbitMQ acquisition illustrates, but for now all this comes from force.com and isn’t directly replicable. Which means that applications that use them aren’t quite so portable.

In his post, Steve Herrod quickly moves past the VMforce announcement to focus on the SpringSource+VMWare infrastructure part, the one he hopes to see multiplied everywhere. The key promise, from the developers’ perspective, is application portability. And while the use of Java+Spring definitely helps a lot in terms of code portability I see some promises in terms of data portability that will warrant scrutiny when VMforce actually rolls out: “you should be able to extract the code from the cloud it currently runs in and move it, along with its data, to another cloud choice”.

It sounds very nice, but the underlying issues are:

  • Does the code change depending on whether I am talking to a local relational DB in my private cloud or whether I am on VMforce and using the force.com database?
  • If it doesn’t then the application is portable, but an extra service i still needed to actually move the data from one cloud to the other (can this be done in-flight? what downtime is needed?)
  • What about the other VMforce.com services (chatter, workflow, analytics…)? If I use them in my code can I keep using them once I migrate out of VMforce to a private cloud? Are they remotely invocable? Does the code change? And if I want to completely sever my links with SalesForce, can I find alternative implementations of these application platform services in my private cloud? Or from another public cloud provider? The answer to these is probably no, which means that you are only portable out of VMforce if you restrain yourself from using much of the value of the platform. It’s not even clear whether you can completely restrain yourself from using it, e.g. can you run on force.com without using their IdM system?

All these are hard questions. I am not blaming anyone for not answering them today since no-one does. But we shouldn’t sweep them under the rug. I am sure VMWare is working on finding workable compromises but I doubt it will be as simple, clean and portable as Steve Herrod implies. It’s funny  how Steve and Anshu’s posts seem to reinforce and congratulate one another, until you realize that they are in large part talking about very different things. Anshu’s is almost entirely about the force.com application platform services (sprinkled with some weird Facebook envy), Steve’s is entirely about the application runtime and its infrastructure.

One thing that I am surprised not to see mentioned is the management aspect of the platform, especially considering the investment that SpringSource made in Hyperic. I can only assume that work is under way on this and that we’ll hear about it soon. One aspect of the management story that concerns me a bit is the lack of acknowledgment of the challenges of configuration management in a PaaS setting. Especially when I read Steve Herrod asserting that the VMWare/SpringSource PaaS platform is going to free us from the burden of “handling code modifications that may be required as the middleware versions change”. There seems to be a misconception that because the application administrators are not the ones doing the infrastructure updates they don’t need to worry about the impact of these updates on their application. Is Steve implying that the first release of the VMWare/SpringSource PaaS stack is going to be so perfect that the hypervisor, guest OS and app server will never have to be patched and versioned? If that’s not the case, then why are those patches suddenly less likely impact the application code? In fact the situation is even worse as the application administrator does not know which hypervisor/OS/middleware patches are being applied and when. They can’t test against the new version ahead of time for validation and they can’t make sure the change is scheduled during a non-critical period for their business. I wrote an entire blog post on this issue six months ago and it’s a little bit disheartening to see the issue flatly denied and ignored. Management is not just monitoring.

Here is another intriguing comment in Steve’s entry: “one of the key differentiators with EC2 based PaaS will be the efficiencies for the many-app model. Customers are frustrated with the need to buy a whole VM as the minimum service unit for their applications. Our PaaS will provide fine-grained resource separation”. I had to read it twice when I realized that the VMWare CTO was telling us that splitting a physical machine into VMs is not a good enough way to share its resources and that you really need middleware-level multi-tenancy. But who can disagree that a GAE-like architecture can support more low-traffic applications on the same server than anything based on VM-based sharing? Which (along with deep pockets) puts Google in position to offer free hosting for low-traffic applications, a great way to build adoption.

These are very early days in the history of PaaS. VMWare, like the rest of us, will need to tackle all these issues one by one. In the meantime, this is an interesting announcement and a noticeable milestone. Let’s just keep our eyes open on the incremental nature of progress and the long list of remaining issues.

[UPDATED 2010/4/29: See the follow-up post, PaaS portability challenges and the VMforce example.]

[UPDATED 2010/6/9: This entry points out how the OS level is a gap in VMWare’s portfolio. They took a step in addressing this today, by partnering with Novell to offer SUSE support.]

yalcinalp

12 Comments

Filed under Application Mgmt, BPM, Cloud Computing, Everything, Google App Engine, Middleware, PaaS, Portability, Spring, Tech, Virtualization, VMforce, VMware

Is Business Process Execution the killer app for PaaS?

Have you noticed the slow build-up of business process engines available “as a service”? Force.com recently introduced a “Visual Process Manager”. Amazon is looking for product managers to help customers “securely compos[e] processes using capabilities from all parts of their organization as well as those outside their organization, including existing legacy applications, long-running activities, human interactions, cloud services, or even complex processes provided by business partners”. I’ve read somewhere (can’t find a link right now) that WSO2 was planning to make its Business Process Server available as a Cloud service. I haven’t tracked Azure very closely, but I expect AppFabric to soon support a BizTalk-like process engine. And I wouldn’t be surprised if VMWare decided to make an acquisition in the area of business process execution.

Attacking PaaS from the business process angle is counter-intuitive. Rather, isn’t the obvious low-hanging fruit for PaaS a simple synchronous HTTP request handler (e.g. a servlet or its Python, Ruby, etc equivalent)? Which is what Google App Engine (GAE) and Heroku mainly provide. GAE almost defined PaaS as a category in the same way that Amazon EC2 defined IaaS. The expectation that a CGI or servlet-like container naturally precedes a business process engine is also reinforced by the history of middleware stacks. Simple HTTP request-response is the first thing that gets defined (the first version of the servlet package was java.servlet.* since it even predates javax), the first thing that gets standardized (JSR 53: servlet 2.3 and JSP 1.2) and the first thing that gets widely commoditized (e.g. Apache Tomcat). Rather than a core part of the middleware stack, business process engines (BPEL and the like) are typically thought of as a more “advanced” or “enterprise” capability, one that come later, as part of the extended middleware stack.

But nothing says it has to be that way. If you think about it a bit longer, there are some reasons why business process execution might actually be a more logical beach head for PaaS  than simple HTTP request handlers.

1) Small contract

Architecturally, the contract between a business process engine and the deployed entities (process definitions) is much smaller than the contract of a GAE-style HTTP handler. Those GAE contracts include an entire programming language and lots of libraries. A BPEL container, on the other hand, has a simple contract. It’s documented in one specification (plus a few dependencies) and offers basic activities like routing logic, message correlation, simple data manipulation, compensation handlers and service invocation. You may not think of BPEL as “simple” but would you rather implement a BPEL engine or a complete Python interpreter along with most of the core libraries? I thought so. That’s what I mean by a simpler (narrower) contract. And BPEL is just one example, I suspect some PaaS platforms will take a more bare-bone approach (e.g. no “scopes”).

Just like “good fences make good neighbors”, small contracts make good Cloud services. When your container only interprets a business process definition (typically an XML document), you don’t need to worry about intercepting/preventing all the nasty low-level APIs (e.g. unfettered network access, filesystem reads, OS calls…) that are not acceptable in a PaaS situation. But that is what Google had to do in the process of pairing down a general-purpose programming language to fit into the constraints of a PaaS container. There is no intrinsic reason why a synchronous HTTP request handler has to have access to image-manipulation libraries and a business process handler doesn’t. But the use cases tend to push you in that direction and the expectations have been set. As a result, a business process engine is architecturally a better candidate for being delivered as a Cloud service.

2) Major differentiator over IaaS-based solutions

Practically speaking, it is pretty easy today to get a (synchronous) Web app framework up and running “in the Cloud”. Provisioning a Django, PHP, RoR or Tomcat (plus the Java framework of your choice) stack on EC2 is a well-traveled path. Even auto-scaling these things is pretty well understood. I am the first one to scream that “here is an AMI of our server stack” is *not* the same as PaaS, but truth be told many people are happy enough with it. As a result, the benefit of going from a “web app on IaaS” situation to GAE-like situation is not perceived as very compelling. I suspect the realization may hit later, but for now people are happy to trade the simplified administration and extra scalability of PaaS for the ability to keep their current framework (MySQL and all) unchanged.

There is no fundamental reason why you can’t run a business process engine on top of an IaaS-provisioned infrastructure. It’s just that you are mostly on your own at this point. Even if you find an existing public AMI that meets your needs, I doubt you’ll find a well-tested way to manage, backup and auto-scale this system (marrying IaaS-level invocations with container-level and DB-level tasks). Or if you do it will probably cost you. In that “new frontier” context, a true PaaS alternative to the “build it on top of IaaS” approach is a lot more compelling than if all you need is yet another RoR-on-EC2 system.

When deciding whether to walk back to your hotel after dinner or take a cab, you don’t just consider the distance. How familiar you are with the neighborhood and how safe it appears are also important parameters.

3) There is an existing market

This may not be obvious to people who come to PaaS from a Web application framework perspective, but there is a large market for business process engines in enterprise integration scenarios. Whether it’s Oracle Fusion Middleware, Microsoft BizTalk, webMethods (now Software AG) or others, this is a very common and useful tool in the enterprise computing toolbox. If this is the market you are after (rather than creating Facebook apps or the next Twitter), then you have to address this need. Not to mention that business processes engines are often used for partner integration scenarios (which makes hosting in a public Cloud a natural choice).

Conclusion

In the end, both synchronous and asynchronous execution engines are useful, as are other core services like storage (here is my proposed list of PaaS container types). I just wanted to bring some attention to business process execution because I think PaaS is the context in which its profile will rise to higher prominence. I also anticipate that this rise will lead to some very interesting progress and innovation in the way these processes are defined, deployed and managed. We haven’t yet seen, in this area, the relentless evolutionary pressure that has shaped today’s synchronous Web application frameworks. Fun times ahead.

[UPDATED 2010/2/18: More information about Salesforce.com’s Visual Process Manager.]

1 Comment

Filed under Application Mgmt, BPEL, BPM, Business Process, Cloud Computing, Everything, Google App Engine, Middleware, PaaS, Portability, Tech, Utility computing

Expanding on “twitter with a brain”

Chuck Shotton recently made a compelling case (“Twitter with a Brain“) for Twitter tools to allow the user to change the protocol endpoint. That is, instead of always going to twitter.com, you can tell your Twitter client to send all requests to myTweetInterceptor.me.com. Why would you do this? You should read his blog entry, but in short his point is that the intermediary can add all kinds of new features that neither the Twitter client nor Twitter itself support. As always in computer science, a new level of decoupling adds opportunities for extensions (and breakage too, of course).

I fully agree with what he writes and I would very much like to see his call to action answered. In fact, I want more than what he is asking for. So here is my call to action:

1) It’s not just Twitter

Why just Twitter? This should be true for any client using any protocol. Why not also the APIs for the various Google and Yahoo services? The APIs for the other social networks beyond Twitter? For shopping sites like Amazon and EBay? Etc. And of course to all the various Cloud providers out there. Just because I am using the Amazon EC2 API it doesn’t mean I necessarily want the requests to go straight to Amazon. Client tools should always make the endpoint configurable, period.

2) It’s not just the clients, it’s also (and especially) the third party sites

Chuck’s examples are about features that the Twitter clients could provide but don’t, so an intermediary would be an easy way to hack support for them (others presumably include modifying the client – if open source -, writing a plug-in for it – it there is such mechanism -, or running a network interceptor on the local client – unless the protocol is encrypted-).

That’s nice and I’d love to see this, but the big deal for me is less with clients and more with third party sites. You know, all these sites that ask for your Twitter login/password. Or those that ask for your GMail/Yahoo account info to retrieve a list of your contacts. I never grant these requests, but I would consider it if they allowed me to tell them what endpoint URL to use. For example, rather than using my Twitter login to go straight to twitter.com, they would use a login/password that I create and talk to twitterIntermediary.vambenepe.com. The requests would be in the exact same shape as what they send today to Twitter, just directed to another URL. There, I could have a proxy that only allows some requests (e.g. “update twitter background image” but not “send update”) and forwards them using my real Twitter credentials. Or, for email accounts, I could have a proxy that allows requests that read my address book but not those that read my mails. The goal here is not to add features, it is to delegate trust in a fine-grained (and audited) manner. This, to me, is the burning need, rather than a 3rd place to implement Twitter lists.

I would probably write these proxies using a PaaS platform like the Google App Engine. Or maybe even Yahoo Pipes. I have long struggled to think of use cases for which Yahoo Pipes hits the sweetspot, and this may well be it. Especially if people write modules to handle specific APIs (e.g. a “Twitter API” module that shows all operations and lets you enable/disable them one by one in a pipe). The one thing missing would be a way for a pipe to keep a log of its invocations, for auditing.

You want access to my email and social network accounts? Give me the ability to filter you requests and you’ll get access. If it’s blind trust you want, I am afraid I have a very limited supply.

[Note: I wanted to add this as a comment on Chuck’s blog, but he doesn’t seem to allow them: “go start your own blog and/or shut up and eat your vegetables” is his recommendation. Since I already have my own blog, I guess I don’t have to eat my vegetables if I don’t want to. I just hope my kids don’t learn about this rule or they’ll be blogging in no time.]

[UPDATED 2009/11/30: WRT to Chuck’s request, it looks like it’s being done already. But no luck with the third party sites so far, which is what I most want to see.]

6 Comments

Filed under Automation, Everything, Google App Engine, Implementation, Mashup, PaaS, Portability, Protocols, Security, Social networks, Twitter, Yahoo

Desirable technical characteristics of PaaS

PaaS can most dramatically improve the IT experience in four areas:

  • Hosting/operations efficiency
  • Application-centric management
  • Development productivity
  • Security

To do so, there are technical characteristics that PaaS frameworks should eventually exhibit. These are not technical characteristics of a given PaaS container, they are shared characteristics that go across all container types, no matter what the operational capabilities of the containers are.

Here is a rough and unorganized list of the desirable characteristics (meta-capabilities) of PaaS Cloud containers:

  • An application component model that supports deployment/configuration across all PaaS container types.
  • Explicit interactions/invocations between application components (resilient connections between component: infrastructure-level retry/reroute)
  • Uniform and consistent request tracking across all components. Ability to intercept component-to-component communication.
  • Short-term (or externally persisted) state so that all instances can be quickly redirected out of any one node.
  • Subset of platform management interface exposed to consumer, along with out of the box application management. Application metrics consolidated at application level rather than node level.
  • Consistent, model-based application management interface across all container types. Hooks for component code to provide its manageability in the same framework.
  • Minimal footprint of any container node for limited patching requirements.
  • Assistance for debugging platform-hosted code (see this entry).
  • No encroachment of container technology on application contract (e.g. no forced URL structure).
  • Application uniformly scalable to the limit of the underlying hardware (no imposed partitioning).
  • Shared authentication / authorization / auditing across containers.
  • Minimum contract/interface exposed by each container.
  • Governance of application services, aligned (in model/protocols) with the container management interfaces.
  • [UPDATE: need to add metering+billing as William Louth pointed out in a comment]

This applies across the board to public, private and hybrid PaaS. The distinctions between these delivery models are real but at a different level. The important thing is that the PaaS administrator is different from the application administrator in all cases. On the other hand, most of these technical characteristics are not achievable for lower-level Cloud resources (like virtual hosts and low-level storage) which is why the IaaS form of Cloud leaves the Cloud promise only partially fulfilled.

4 Comments

Filed under Application Mgmt, Cloud Computing, Everything, IT Systems Mgmt, Manageability, Mgmt integration, Middleware, PaaS, Utility computing

Enumeration of PaaS container types

What do we need from an on-demand application platform for enterprise software? Here is a proposed classification of container types on which you can create/scale/manage applications. Your application is made of modules that run on these containers (e.g. one app may have two “synchronous web request” modules, one “structured data service” module and one “scheduled job” module). All tied together using an application component model that dovetails with the capabilities of the different containers. The proposed containers map to the following capabilities:

  • Synchronous web request processing
  • Long-lived (persisted) process execution with introspectable/declarative flow
  • Event processing
  • Persistence (a few different types: structured vs. buckets/files vs. object cache)
  • Batch/background/scheduled/queued processing
  • Possibly some advanced Web/mobile UI (portals, human task flows…)
  • User management (self-contained or as an abstraction layer for other systems)
  • [UPDATED 2009/11/19: I should have included pluggable protocol/format adapters.]

While new applications may be built to run purely on such a platform, you will not be able to run your IT solely on it anytime in the foreseeable future. So if you are thinking about it from the perspective of the entire universe of virtualization containers needed to support your IT system, you’ll need to add lower-level container types, such as:

  • Guest hosts (typically from hypervisors)
  • Low-level (e.g. block) storage
  • Networking between them

Another way to think about it is that Cloud/Utility computing is about having pools of resources dynamically allocated. There needs to be few enough pools that each pool is large enough and used across enough consumers to derive efficiencies from the act of sharing. But there needs to be enough pool types that applications have a complete infrastructure to run on that lets them abstracts away what is not business logic. This list is an attempt at this middle ground.

This is a classification of containers, not a description. There are many different ways to realize each of them. The synchronous  web request processing could look like a servlet engine, a Python handler or a PHP page. The persisted execution could be a BPEL engine or some other state machine definition/execution engine. The structured data interface could look like SQL, XQuery or SPARQL, etc… In addition, more specialized application infrastructure elements (e.g. video streaming, analytics) might enter the picture for some applications.

I hope to see the discussion move beyond “IaaS vs. PaaS” towards talking about more specific container types that are needed/supported by the different virtualization stacks. My application doesn’t care if the file container is considered IaaS or PaaS.

The next post will list desired characteristics of the PaaS environment (meta-capabilities that go across all the container types in the first list but may not be available from the lower-level containers in the second list).

7 Comments

Filed under Application Mgmt, Cloud Computing, Everything, Middleware, PaaS, Utility computing

Would you like some management with that appliance?

Andi Mann recently wrote an interesting post about virtual appliances . He uses the domain name pleasediscuss.com for his blog so I figured I’d do just that. More specifically, I have three comments on his article.

Opaque or transparent appliance

Andi’s concerns about the security and management problems posed by virtual appliances are real, but he seems to assume that the content of the appliance is necessarily opaque to the customer and under the responsibility of the appliance provider. Why can’t a virtual appliance be transparent in the sense that the customer is able to efficiently manage at least some aspects of the software installed on it? “You can’t put agents on most virtual appliances, they don’t come with WMI, and most have only a GUI for management” says Andi. Why can’t an appliance come with an agent (especially in these days of consolidation where many vendors provide many layers of the stack – hypervisor / OS / application container / application / management tools – including their agent)? Why can’t it implement a standard management API (most servers nowadays implement WBEM, WS-Management and/or IPMI pre-boot – on the motherboard – which is a lot more challenging to do than supporting a similar protocol in a virtual appliance). Andi is really criticizing the current offering more than the virtual appliance model per se and in this I can join him.

Let me put it differently, since this is probably just a question of definition: what would Andi call a virtual appliance that does expose management APIs for its infrastructure (e.g. WS-Management for the OS, JMX for the java stack) or that comes with an agent (HP, IBM, BMC, Oracle…) installed on it?

Such an appliance (let’s call it a “transparent virtual appliance” for now) doesn’t provide all the commonly claimed benefits of an appliance (zero config/admin) but as Andi points out these benefits come with major intrinsic drawbacks. A transparent virtual appliance still drastically simplifies installation (especially useful for test/dev/demo/POC). It doesn’t entirely free you of monitoring and configuration but at least it provides you with a very consistent and controlled starting point, manageable from the start (no need to subsequently install an agent). In addition, it can be made “just enough” (just enough OS, just enough app server…) to require a lot less maintenance than an application stack that you assemble yourself out of generic parts. We’ll always have trade offs between how optimized/customized it is versus how uniform your overall environment can be, but I don’t see the use of an appliance as a delivery mechanism as necessarily cornering you into a completely opaque situation, from a management perspective.

Those who attended Oracle Open World a few weeks ago were treated to an example of such an appliance, if they attended any of the sessions that covered Oracle’s Appliance Builder (the main one was, I believe, Virtualizing Oracle Fusion Middleware in the Modern Data Center, in case you have access to the Open World On Demand replay and slides). I believe it’s probably the same content that @jayfry3 was shown when he tweeted about “Oracle is demoing their private cloud self-service app”. These appliances are not at all opaque from a management perspective. To the contrary, they are highly manageable, coming with an Enterprise Manager agent installed that can manage everything in the appliance (and when that “everything” doesn’t include the OS, it’s because there isn’t one thanks to JRockit Virtual Edition, making things slimmer, faster, safer and more manageable). And of course the OVM-based environment in which you deploy these appliances is also managed by Enterprise Manager. OK, my point here wasn’t to go into marketing mode, but this is cool stuff and an example of what virtual appliances should be. BTW, this was also demonstrated during Hasan Rizvi’s keynote at OpenWorld, including the management of these systems through Enterprise Manager.

In the long run it’s irrelevant

As with all things computer-related, the issue is going to get blurrier and then irrelevant . The great thing about software is that there is no solid line. In this case, we will eventually get more customized appliances (via appliance builders or model-driven appliance generation) blurring the line between installed software and appliance-based software.

Waiting for PaaS

Towards the end of his post, Andi paints an optimistic vision of the future: “I also think that virtual appliances have a bright future – but in some ways I continue to see them as a beta version of what could (or should) come next.  By adding in capabilities for responsible and accountable management, they could form the basis of more fully-functional virtual service management containers. These in turn could form the basis of elastic, mobile, network-deployed, responsible cloud appliances that deliver complete end-to-end service management without regard to physical location or domain of control.”

I mostly agree with this vision, though when I describe it it is in the guise of a PaaS platform. Where your appliance (which today goes from the OS all the way to the app) has shrunk to an application template that you deploy in the PaaS environment (rather than in a hypervisor). If/when the underlying PaaS environment has reached the right level of management automation you get all the benefits of an appliance while maintaining the consistency of your environment and its adherence to your management policies (because the environment is the PaaS platform and its management is driven from your policies).

[As is often the case, this started as a comment (on Andi’s blog) and quickly outgrew that environment, leading to this new post. Plus, Andi’s blog is brand new and seems to be well worth spreading the word about (Andi himself is under-marketing it).]

3 Comments

Filed under Application Mgmt, Automation, Desired State, Everything, IT Systems Mgmt, Manageability, Oracle, Oracle Open World, OVM, PaaS, Virtual appliance, WS-Management

Cloud platform patching conundrum: PaaS has it much worse than IaaS and SaaS

The potential user impact of changes (e.g. patches or config changes) made on the Cloud infrastructure (by the Cloud provider) is a sore point in the Cloud value proposition (see Hoff’s take for example). You have no control over patching/config actions taken by the provider, any of which could potentially affect you. In a traditional data center, you can test the various changes on specific applications; you don’t have to apply them at the same time on all servers; and you can even decide to skip some infrastructure patches not relevant to your application (“if it aint’ broken…”). Not so in a Cloud environment, where you may not even know about a change until after the fact. And you have no control over the timing and the roll-out of the patch, so that some of your instances may be running on patched nodes and others may not (good luck with troubleshooting that).

Unfortunately, this is even worse for PaaS than IaaS. Simply because you seat on a lot more infrastructure that is opaque to you. In a IaaS environment, the only thing that can change is the hardware (rarely a cause of problem) and the hypervisor (or equivalent Cloud OS). In a PaaS environment, it’s all that plus whatever flavor of OS and application container is used. Depending on how streamlined this all is (just enough OS/AS versus a traditional deployment), that’s potentially a lot of code and configuration. Troubleshooting is also somewhat easier in a IaaS setup because the error logs are localized (or localizable) to a specific instance. Not necessarily so with PaaS (and even if you could localize the error, you couldn’t guarantee that your troubleshooting test runs on the same node anyway).

In a way, PaaS is squeezed between IaaS and SaaS on this. IaaS gets away with a manageable problem because the opaque infrastructure is not too thick. For SaaS it’s manageable too because the consumer is typically either a human (who is a lot more resilient to change) or a very simple and well-understood interface (e.g. IMAP or some Web services). Contrast this with PaaS where the contract is that of an application container (e.g. JEE, RoR, Django).There are all kinds of subtle behaviors (e.g, timing/ordering issues) that are not part of the contract and can surface after a patch: for example, a bug in the application that was never found because before the patch things always happened in a certain order that the application implicitly – and erroneously – relied on. That’s exactly why you always test your key applications today even if the OS/AS patch should, in theory, not change anything for the application. And it’s not just patches that can do that. For example, network upgrades can introduce timing changes that surface new issues in the application.

And it goes both ways. Just like you can be hurt by the Cloud provider patching things, you can be hurt by them not patching things. What if there is an obscure bug in their infrastructure that only affects your application. First you have to convince them to troubleshoot with you. Then you have to convince them to produce (or get their software vendor to produce) and deploy a patch.

So what are the solutions? Is PaaS doomed to never go beyond hobbyists? Of course not. The possible solutions are:

  • Write a bug-free and high-performance PaaS infrastructure from the start, one that never needs to be changed in any way. How hard could it be? ;-)
  • More realistically, narrowly define container types to reduce both the contract and the size of the underlying implementation of each instance. For example, rather than deploying a full JEE+SOA container componentize the application so that each component can deploy in a small container (e.g. a servlet engine, a process management engine, a rule engine, etc). As a result, the interface exposed by each container type can be more easily and fully tested. And because each instance is slimmer, it requires fewer patches over time.
  • PaaS providers may give their users some amount of visibility and control over this. For example, by announcing upgrades ahead of time, providing updated nodes to test on early and allowing users to specify “freeze” periods where nothing changes (unless an urgent security patch is needed, presumably). Time for a Cloud “refresh” in ITIL/ITSM-land?
  • The PaaS providers may also be able to facilitate debugging of infrastructure-related problem. For example by stamping the logs with a version ID for the infrastructure on the node that generated the log entry. And the ability to request that a test runs on a node with the same version. Keeping in mind that in a SOA / Composite world, the root cause of a problem found on one node may be a configuration change on a different node…

Some closing notes:

  • Another incarnation of this problem is likely to show up in the form of PaaS certification. We should not assume that just because you use a PaaS you are the developer of the application. Why can’t I license an ISV app that runs on GAE? But then, what does the ISV certify against? A given PaaS provider, e.g. Google? A given version of the PaaS infrastructure (if there is such a thing… Google advertises versions of the GAE SDK, but not of the actual GAE runtime)? Or maybe a given PaaS software stack, e.g. the Oracle/Microsoft/IBM/VMWare/JBoss/etc, meaning that any Cloud provider who uses this software stack is certified?
  • I have only discussed here changes to the underlying platform that do not change the contract (or at least only introduce backward-compatible changes, i.e. add APIs but don’t remove any). The matter of non-compatible platform updates (and version coexistence) is also a whole other ball of wax, one that comes with echoes of SOA governance discussions (because in PaaS we are talking about pure software contracts, not hardware or hardware-like contracts). Another area in which PaaS has larger challenges than IaaS.
  • Finally, for an illustration of how a highly focused and specialized container cuts down on the need for config changes, look at this photo from earlier today during the presentation of JRockit Virtual Edition at Oracle Open World. This slide shows (in font size 3, don’t worry you’re not supposed to be able to read), the list of configuration files present on a normal Linux instance, versus a stripped-down (“JeOS”) Linux, versus JRockit VE.


By the way, JRockit VE is very interesting and the environment today is much more favorable than when BEA first did it, but that’s a topic for another post.

[UPDATED 2009/10/22: For more on this (in an EC2-centric context) see section 4 (“service problem resolution”) of this IBM paper. It ends with “another possible direction is to develop new mechanisms or APIs to enable cloud users to directly and automatically query and correlate application level events with lower level hardware information to better identify the root cause of the problem”.]

[UPDATES 2012/4/1: An example of a PaaS platform update which didn’t go well.]

9 Comments

Filed under Application Mgmt, Cloud Computing, Everything, Google App Engine, Governance, ITIL, Manageability, Mgmt integration, PaaS, SaaS, Utility computing, Virtualization

PaaS as a satisfying and success-ready hobbyist platform

I don’t know anyone in Silicon Valley who can code and doesn’t fantasize about writing an accidental killer app. One that gets designed during a long layover in DEN and implemented in a rainy weekend (El Nino is my VC). One that was only supposed to meet the needs of a few friends and is used by half of the world a few months/years later.

I am not talking about seasoned entrepreneurs, who have a network, discipline, resources and enough experience to know that it takes a lot more than a cool idea. Rather, about programming hobbyists (who may of may not be programmers in their day jobs),

By definition, hobbyists only do things that are satisfying. In the rarefied air of Silicon Valley, it also helps if there is a conceivable “upside” to dream about. Platform as a Service (PaaS, e.g. Google App Engine) provides both to software-oriented hobbyist. And make it very cheap (borderline free), which doesn’t hurt.

Satisfying

In a well-crafted PaaS environment, the development process and the result are both satisfying. I am not a Google shrill, but GAE is a fair example. The barrier to entry is very low (the download is less than 10MB and contains all you need to get started). In an hour you have an application running locally. In an hour and 5 minutes you have it deployed and accessible on the web for all. And yet this ease of bootstrap does not come at the cost of too many longer-term limitations (now that the environment has gown a bit from the original limitations and provides scheduled and background jobs). Unlike Yahoo Pipes, for which the first impression is “nifty!” and the second is “gimme a textual representation of my pipe now!”.

Beyond the easy ramp-up, the main source of satisfaction developing in a PaaS environment is that you spend 99% of your time working on the application. Not the OS, not the firewall, not the application container, not the database. Not to mention having to deal with your co-lo provider or the leased line for the servers in the basement. If you are a hobbyist with only a few spare hours per week, that’s a make or break deal. It also means that you have a fighting chance of developing a secure application because you are responsible for a much smaller surface of attack.

Eons ago (in computing time), Visual Basic was the name of the game for these people. More recent was the rise of PHP. It dramatically lowered the barrier to adoption and provided a quick route to a working web application. I know several non-professional developers (e.g. web designers) who are scared of any “normal” programming language but happily write PHP (often of equivalent complexity BTW). Combine this with the wide availability of ISP-managed PHP environments and you get close to what GAE gives you. At the risk of adding to the annoying trend of retroactively cloudifying everything, I think of ISP-hosted PHP as the first generation of PaaS. But it is focused on “show what’s in the DB” scenarios rather than service-centric / mash-up / web 2.0 integration. And even for DB-centric scenarios, by and large PHP coders don’t want to think too much about model and queries (and it shows). I think Google decided to go with Python rather than the easy route of aping the hosted PHP environments in large part to avoid hitting such ceilings down the road. Not surprisingly, PHP support is currently the most requested GAE feature, ahead of Perl and Ruby. Lets see if Google tries to get the PHP community on board or prefers to stay clear of such PaaS legacy (already!).

Ready for success

In the unlikely event that your application catches fire and sees wide adoption (which is not impossible, especially if well integrated in a social network), what are you going to do about it? Keeping in mind two constraints: first, this is a part-time hobby of yours. Second, don’t dream of riches. We are talking about an influx of facebookers or twitterers here, with no intention to pay for anything. But click they will. If you were going to answer: “I get funding and hire a real IT staff” then think again. You most likely won’t get funding for your toy app without revenue potential. And even if you do, by the time you have it it’s too late and people have moved on because you were not there when the spotlight was on you.

With a PaaS-based application you have a fighting chance. If the spike is short enough, you may not even hit the limit of the free quota. If it does, you have the choice of whether you are willing to pay to support the extra traffic or not. No change in code required (though it may be advised anyway, if your app wasn’t architected for efficient scaling – PaaS doesn’t entirely take this off your hands).

That “sudden spike” story is a commonly-invoked use case for EC2. And it’s probably true for a start-up with an IT staff (of at least one full-time person). But despite Amazon’s efforts (and other providers such as RightScale) this type of scaling is something you have to architect for and putting it in place takes away from the time you spend coding application features. It also means that you are responsible for more infrastructure (OS and application container at least). Not to mention that IaaS providers don’t usually offer free resources for limited usage, the way Google does (I suspect 99% of GAE apps never get over this quota). Even if a small EC2 instance is not very expensive (though it adds up over time if you keep it up for that occasional user), the difference between “free” and “cheap” is significant. As an application provider you’d like for this not to be the case with your users, but as a consumer of infrastructure service you’re on the other side of the deal, aren’t you?

There is a reason why suburbia-bound SUVs are advertised crossing mountain streams. The “I could if I wanted to” line has appeal. For the software hobbyist, knowing that your application won’t crash if it happened to meet success (even if only for a couple of days, e.g. the Slashdot effect) is a good feeling (“I could if *they* wanted to”). In truth this occasion is rare (and likely to end up like this), but you are ready for the eventuality. And if there are enough such hobbyists, then statistically some will encounter it.

The provider’s upside

That last point brings the topic of the PaaS provider’s upside in this. I have read several critical comments arguing that no company will rewrite their application for GAE (true) and that no start-up will write their new code for it either because of the risk of lock-in (also true: “being bought by Google” is not a bad outcome but “has to be bought by Google” is a bad exit strategy). But I think this misses the point of casting such a wide nest and starting with creating a great tool for hobbyists.

After all, Google has made a great business monetizing millions of small sites none of which makes much money by itself. At the very least least this can grow the web and, symbiotically, Google. With  two possible upsides:

  • Some of these hobbyist applications may actually take off and Google becomes their natural partner/godfather (including managing their user accounts). For example, wouldn’t it be nice for Google if Craigslist or Twitter was running on GAE?
  • The platform eventually evolves into something that makes sense for start-ups, SMBs and/or enterprises to use. Google works out the kinks with less demanding users first.

Interesting times

Two closing thoughts, which I’ll leave undeveloped for now:

  • There is an especially good synergy between mobile apps and PaaS. Once you get past the restaurant tip calculators, many mobile apps need a server-hosted sidekick to do the heavy lifting of gathering/storing/transforming data. As a hobbyist, you want to spend most of your time making you mobile app cool. Which leaves even less time for administrating server components. On the server side, you are even less likely to want to deal with anything but application logic. PaaS is especially attractive in these scenarios. Google and Microsoft have to navigate these waters carefully but look for some synergy/integration stories around GAE + Android and Azure + Windows Mobile respectively. Not clear what Apple’s story is here or if they think they need one. If it surfaces as an issue then we have yet another reason to restart the “Apple buys Adobe” rumor. Or maybe Sanjiva will get a middle-of-the-night call from Steve Jobs…
  • A platform to build/run your application is one thing. A way to reach users is another (arguably much more critical). Things like mobile app stores (especially Apple’s of course), Facebook and next generation app stores. But this goes  beyond the scope of this post.

Just to be clear, I am not in any way suggesting that PaaS is only for hobbyists. I am just saying that right now it is a great tool for them, the best way for an individual programmer to have fun and have an impact. This doesn’t take away from the value that PaaS will eventually deliver to larger organizations.

[UPDATED 2009/10/4: Microsoft Azure apparently supports PHP.]

5 Comments

Filed under Cloud Computing, Everything, Google, Google App Engine, Implementation, Mashup, Microsoft, PaaS, Utility computing, WSO2