[UPDATED 2009/6/30: Check the following post for a more practical solution.]
Here is a simple way to upload a text (i.e. not binary) file to a Windows machine. Because my interest is to be able to do it from any platform, I investigated the use of WS-Management. But the method relies on invoking WMI methods over WS-Management, so I don’t see why it would not also work in a straight WMI scenario if you prefer.
I am not a Windows management expert, so there may be a much better way to do this (e.g. BITS). But if what you’re after is the simplest possible way to drop a file on a Windows machine it from a non-Windows machine, it doesn’t get much simpler than sending an XML doc over HTTP and calling it a day. Here is how.
The easiest would be if the CIM_DataFile WMI class had a “create” method to create a new file. It doesn’t. But Win32_Process does. Invoking this method creates a new process and you get to specify the command line to execute. All you need to do is come up with a command line that invokes a program that will create the file that you want to upload.
There may be alternatives, but the command line I came up with for this purpose uses the “cmd.exe” interpreter (the Windows command-line shell). By using the “/c” option, you can invoke this interpreter with its instructions as parameters directly on the command line (it gets a bit confusing because we have two “command lines” here, the one that is used to launch the “cmd.exe” shell and the one that is presented inside the “cmd.exe” shell).
Anyway, if you type the following line inside the “start/run” field in Windows
cmd /c echo 1st line > test1.txt
It will have the same effect as opening a command shell, typing “echo 1st line > test1.txt” in it and the closing it. It creates a new file called “test1.txt” with one line of content (“1st line”). If you want a second line, you can do this by adding a second command that uses “>>” (append) instead of “>”. And the two commands can be joined by “&&” to invoke them in one pass. So to create a file with three lines, we’d execute:
cmd /c echo 1st line > test1.txt && echo 2nd line >> test1.txt
&& echo 3rd line >> test1.txt
Now all we have to do is package this in a WS-Management SOAP message and post it to the WS-Management listener of the Windows machine. In the process, we have to escape the “&” in the command line to “&” because of XML syntax rules. The resulting message looks like:
<s:Envelope
xmlns:s="http://www.w3.org/2003/05/soap-envelope"
xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:w="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
<s:Header>
<a:To>http://localhost/wsman</a:To>
<w:ResourceURI s:mustUnderstand="true">
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process
</w:ResourceURI>
<a:ReplyTo>
<a:Address s:mustUnderstand="true">
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
</a:Address>
</a:ReplyTo>
<a:Action s:mustUnderstand="true">
http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process/Create
</a:Action>
<a:MessageID>uuid:9A989269-283B-4624-BAC5-BC291F72E854</a:MessageID>
</s:Header>
<s:Body>
<p:Create_INPUT
xmlns:p="http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process">
<p:CommandLine>cmd /c echo 1st line > test1.txt && echo 2nd line >>
test1.txt && echo 3rd line >> test1.txt</p:CommandLine>
<p:CurrentDirectory>C:datawinrm-test</p:CurrentDirectory>
</p:Create_INPUT>
</s:Body>
</s:Envelope>
You don’t even need a WS-Management toolkit to do this as the only WS-Management header is w:ResourceURI which can easily be set manually. You don’t need a WS-Addressing library either as all the headers are also static (except for the MessageID even though nobody will care in practice if you always send the same value; I hereby authorize you to re-use the one in my example as much as you want). As a side note, this is yet another illustration of how useless this header (and more generally WS-Addressing) is in 95% of the case. And yet the Microsoft WS-Management implementation (like many others) will make a point to fault if you don’t send it. But ranting against WS-Addressing is a topic for another day (look for a future post titled “WS-IfInteroperabilityWasEasyItWouldNotBeFunWouldIt”).
I should mention that you want to set the Content-Type HTTP header to “application/soap+xml;charset=UTF-8” for this message. Or UTF-16 if that’s what you’re sending.
A few comments:
- This obviously only works for character-based files, not binaries
- I’ve noticed that the parsing of the wsa:Action header is pretty minimalistic. The Microsoft implementation seems to just pick up the text behind the last “/”. So you can type send “blahblah/Create” and it works just as well as the correct value, “http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process/Create” (it knows what class to apply the operation on from the Resource URI). Interestingly, there is only one URL ending in “/Create” that doesn’t work and it’s the WS-Transfer “Create” operation (“http://schemas.xmlsoap.org/ws/2004/09/transfer/Create”). That’s because the “Create” operation invoked in the message above is not the WS-Transfer “Create” operation but rather the homonymous operation on the WMI class.
- Using the “/k” modifier on “cmd” in the command line (instead of “/c”) would also work, but the command shell would stay alive after returning so over time you’d have quite a few of them hanging out and using up memory on the remote machine. Not a good move.
- As part of this exercise, I noticed an error in the MSDN page describing the “invoke” method of Win32_Process. In the SOAP body, the URI for the “p” namespace prefix uses “…/cim/…” instead of “…/cimv2/…”, which caused my first attempts to fail.
If the file you want to upload is large, you can break the upload over several successive messages similar to the one above. As long as you use the same file name and use “>>” instead of “>” you’ll keep appending to the end of the file until it’s complete.
Of course this could be any type of text file, including XML (watch for the character-escaping rules though, both for XML and for “cmd” as you have to apply them in the right sequence). Even better, it could be a Python, Perl or PowerShell script too. And in that case (assuming the corresponding interpreter is installed on the machine) you can use the same mechanism to also invoke the script for execution. So that you use this WS-Management interface just to bootstrap into a more comfortable remote-control mechanism.
The next logical question (for extra credit) is whether WS-Management can be used to read files remotely instead of writing them. In theory yes, though in practice you’re much better off with alternate solutions, like the remote shell extension to WS-Management that I have described as “dumb SSH” previously.
But since you ask, here is the theory. My first attempt was to do a WS-Management “Get” (the Get operation from WS-Transfer) on an instance of CIM_DataFile (using the “Name” selector and setting it to “C:datawinrm-testtest1.txt”). But this returns the properties of the file rather than its content. Whether this is kosher is an interesting theoretical question to ponder from a REST-beard-stroking perspective, but it’s useless for my file retrieval purpose. As before, one solution is to use the magical Win32_Process “Create” method to overcome the shortcomings of the CIM_DataFile class. The windows command shell “type” command can be used to display the content of a text file. But the WMI Win32_Process “create” operation that we use here only returns the processId and a result code, not the stdout stream (unlike the remote shell protocol that I mentioned above). We cannot therefore use it directly to return the output of the “type” command over the wire.
The solution is to use one Win32_Process “create” operation over WS-Management to write the content of the file in a place where a subsequent WS-Management opeation can read it. I can think of two examples off the top of my head: directory names and environment variables.
Here is how you’d do it with directory names. The following command takes the test1.txt file, reads it and creates nested subdirectories, one for each line in the input file. The name of the directory is the content of the corresponding line in the file.
for /f "delims=" %I in (test1.txt) do @mkdir "%I" && cd "%I"
For example, if the file content is
1st line
2nd line
3rd line
The command will generate the following three subdirectories:
1st line
|_ 2nd line
|_ 3rd line
What’s the point? You can use WS-Management enumeration to retrieve the names of all directories (using the Win32_Directory WMI class). Now that may be a bit overwhelming, so you want to add a WS-Enumeration filter to your WS-Management request. The Microsoft WS-Management implementation supports the WQL filter syntax that lets you do just that.
BTW, you can presumably do the same thing with files, but directories by their nesting make it easy to read the lines in the order in which their appear in the file. Though you’d quickly run into path length limitations (and characters that are not valid in file/directory names).
A slightly more robust approach may be to set each line of the file in an environment variable (again via the “for”, and using “set” after the “do”). You can then read these environment variables over WS-Management by doing a WS-Transfer Get on the Win32_Environment WMI class. Unlike CIM_DataFile (for which Get only return properties, not the content), a Get on Win32_Environment includes the value of the environment variable as one of the properties. The pragmatic reasons for this dichotomy are obvious, but the architectural consequences will give a headache to anyone who still has any illusion that WS-Transfer has anything to do with REST.
As a side note, the “for” instruction can keep no more than 52 variables at a time, so if your file has more than 52 lines you’d have to send successive WS-Management requests and add a “skip” option to the “for” operation on subsequent requests (“skip=52”, “skip=104”, etc…). Again, practicality isn’t much of a concern here, we’re just playing with theory (Ed: “we”? how many people do you expect will still be reading at this point?).
That’s it for today’s episod of “Windows management for the on-the-wire-protocol guy”. Maybe next weekend I’ll take some time to look more into the remote shell over WS-Management protocol extention and how it can be misued/abused.
[UPDATE: The next post describes a more practical approach.]