Symptoms Autonomic Framework submission to OASIS: CBE meets ITIL?

IBM, Fujitsu and CA have recently proposed a charter for a new OASIS technical committee, called the Symptoms Autonomic Framework (SAF) TC. Including a specification candidate and other submitted documents, listed here.

For context, you need to remember the Common Base Event (CBE) specification that IBM has shopped around for a long time, initially hand in hand with Cisco. As always, the Cover Pages offer the best references on this saga. CBE was submitted to WSDM and came out (in a much-emaciated form) as the WSDM Event Format (WEF) in WSDM 1.1 part 2.

Because so many parts of CBE were left on the floor of the WSDM editing room and because WSDM itself saw little adoption, I have always been expecting IBM to bring CBE back in some form. When I heard of SAF, my instinct was that this was it.

Not so. SAF is meant to sit on top of an event system like CBE. It turns selected events/situations and other data points into symptoms and tells you what to do next. Its focus is on roles, process and knowledge bases. Not on the event format. The operations and payloads defined are not for exchanging events, they are for exchanging “symptoms”, “syndromes”, “prescriptions” and “protocols”.

As the terms show, the specification espouses the medical dialect (even “protocol” is meant to be understand in the medical sense, not as in “HTTP” or “FTP”). While I have been guilty of a similar analogy myself, I also think that if there is one area from which we don’t want to learn in terms of automation, system integration and proper use of IT in general, it’s the medical field. So let’s be careful not to push the analogy too far (section 8.1 of the SAF specification is a fun read, but not necessarily very compelling).

BTW, since when do we use terms strongly associated with one company in the name of standards group (“autonomic”)?

More fundamentally, the main question is what the chances of success of this effort are. Its a huge endeavor (“enabling interoperable diagnosis and treatment of complex systems”) and it tries to structure activities that have been going on for a long time and in many different ways. No-one will adopt this structure for its own sake, so the question is what practical benefits can be derived from this level of standardization. For example, how reliably can incoming events be mapped in practice to symptoms, how efficiently can symptoms be matched to protocols (in typical IBM fashion there seems to be a big  “XPath is my hammer” assumption lurking), etc…

The discussion on the charter is currently open in OASIS if you want to weigh in.

4 Comments

Filed under Automation, Everything, IBM, IT Systems Mgmt, ITIL, Mgmt integration, Specs, Standards

So long Oslo

This post is a farewell to Microsoft’s Oslo project. Not primarily because the name Oslo will be phased out at the next PDC as Doug Purdy reports. More importantly because Doug’s post puts Oslo so far on my back burner that I am unlikely to ever get back to it.

I have mostly been tracking Oslo (the modeling part of it, i.e. the “D” and then “M” stacks and associated tools) from the point of view of its applicability to IT management and Microsoft’s DSI effort. That made sense at first and I found some encouragements in this direction by (see the partial transcript of David Chappell’s video). But from the start there were also many signs of a very different vision for Oslo, as a software development tool with only a peripheral relationship to IT management.

As time went by it became clear that that vision was the real one and Doug’s announcement that Microsoft will “merge the Data Programmability team (EDM, EF, Astoria, XML, ADO.NET, and tools/designers) and the Oslo team (Quadrant, Repository, M) together” is the final confirmation.

M is still a very interesting piece of technology and I’d like to keep track of it, but it’s now too far removed from my focus area for me to justify paying much attention to it in the foreseeable future. Good luck to the team.

In the meantime, this brings back the question of what’s the current modeling story in the System Center team. SDM? SML? Some M-based replacement? Back to CIM? I am just asking because they had been a lot more public and proactive on this than other management vendors, but this has stopped abruptly.

[UPDATED 2009/8/28: Doug responded with enough of a teaser (“some things coming out of incubation in the management space”) to give me a justification to keep at least an eye on Oslo. At the very least I’ll keep monitoring his blog, waiting for this DSI link to emerge.]

3 Comments

Filed under Everything, Microsoft, Modeling, Oslo

Thoughts on VMWare, SpringSource and PaaS

I am late to the party for  commenting on the upstream and downstream acquisitions involving SpringSource. I was away on vacations, but Rod Johnson obviously didn’t have too many holiday plans of his own in August.

First came the acquisition by VMWare. Then the acquisition of Cloud Foundry and the launch of its SpringSource reincarnation.

You’ve all read a lot about this already, so I’ll limit myself to a few bullet-point comments.

  • I was wrong to think at the time of the Hyperic acquisition that SpringSource would focus on app-centric management, BTM and transaction tracing more than Cloud computing and automation.
  • This move by VMWare helps me make some of the points I have been trying to make internally about Cloud computing.
  • This is a step in the progress from “fake machines” to true “virtual machines” (note to self: I may have to stop referring to “fake machines” as “VMWare-style virtual machines”).
  • Savio Rodrigues makes some interesting points, especially on the difference between a framework and a runtime.
  • Many people have hypervisors, a management console and middleware bits. If you are industry-darlings VMWare/SpringSource people seem more willing to assume that you can put them all in a bag, shake it and out comes a PaaS platform than if you are boring old Oracle, Microsoft or IBM. Fine. But let’s see how the (very real) potential gets delivered. Kudos to Adrian Colyer for taking a shot at describing it in a reasonable way, though there is still a fair amount of hand-waving… and already a drift towards the “I don’t need no cluster, I have a hypervisor and everything is a VM” reflex.
  • The “what does it mean for RedHat” angle seems to miss the point to me and be a byproduct of over-focusing on the “open source” aspect which is not all that relevant. This is more about Oracle, Microsoft and IBM than RedHat in my view.
  • Won’t it be fun when Cisco, VMWare and BMC are all one company and little SpringSource calls the shots from within (I have seen this happen more than once during my days at HP Software)?
  • I have no opinion on the question of whether VMWare over-paid or not. I’ll tell you in two years… :-)

Comments Off on Thoughts on VMWare, SpringSource and PaaS

Filed under Application Mgmt, Cloud Computing, Everything, Middleware, Spring, Utility computing, Virtualization, VMware

REST in practice for IT and Cloud management (part 2: configuration management)

What benefits does REST provide for configuration management (in traditional data centers and in Clouds)?

Part 1 of the “REST in practice for IT and Cloud management” investigation looked at Cloud APIs from leading IaaS providers. It examined how RESTful they are and what concrete benefits derive from their RESTfulness. In part 2 we will now look at the configuration management domain. Even though it’s less trendy, it is just as useful, if not more, in understanding the practical value of REST for IT management. Plus, as long as Cloud deployments are mainly of the IaaS kind, you are still left with the problem of managing the configuration of everything that runs of top the virtual machines (OS, middleware, DB, applications…). Or, if you are a glass-half-full person, here is another way to look at it: the great thing about IaaS (and host virtualization in general) is that you can choose to keep your existing infrastructure, applications and management tools (including configuration management) largely unchanged.

At first blush, REST is ideally suited to configuration management.

The RESTful Cloud APIs have no problem retrieving resource descriptions, but they seem somewhat hesitant in the way they deal with resource-specific actions. Tim Bray described one of the challenges in his well-considered Slow REST post. And indeed, applying REST to these “do something that may take some time and not result exactly in what was requested” scenarios is a lot less straightforward than when you’re just doing document/data retrieval. In contrast you’d think that applying REST to the task of retrieving configuration data from a CMDB or other configuration store would be a no-brainer. Especially in the IT management world, where we already have explicit resource models and a rich set of relationships defined. Let’s give each resource a URI that responds to HTTP GET requests, let’s turn the associations into hyperlinks in the resource presentation, let’s mint a MIME type to represent this format and we are out of the office in time for a 4:00PM tennis game when all the courts are available (hopefully our tennis partners are as bright as us and can get out early too). This “work smarter not harder” approach would allow us to present this list of benefits in our weekly progress report:

-1- A URI-based scheme makes the protocol independent of the resource topology, unlike today’s data stores that usually struggle to represent relationships between stores.

-2- It is simpler to code against than CIM-over-HTTP or WS-Management. It is cross-platform, unlike WMI or JMX.

-3- It makes it trivial to browse the configuration data from a Web browser (the resources themselves could provide an HTML representation based on content-type negotiation, or a simple transformation could generate it for the Web browser).

-4- You get REST-induced caching and scalability.

In the shower after the tennis game, it becomes apparent that benefit #4 is largely irrelevant for IT management use cases. That the browser in #3 would not be all that useful beyond simple use cases. That #2 is good for karma but developers will demand a library that hides this benefit anyway. And that the boss is going to say that he doesn’t care about #1either because his product is “the single source of truth” so it needs to import from the other configuration store, not reference them.

Even if we ignore the boss (once again) it only  leaves #1 as a practical benefit. Surprise, that’s also the aspect that came out on top of the analysis in part 1 (see “the API doesn’t constrain the design of the URI space” highlight, reinforced by Mark’s excellent comment on the role of hypertext). Clearly, there is something useful for IT management in this “hypermedia” thing. This will largely be the topic of part 3.

There are also quite a few things that this RESTification of the configuration management store doesn’t solve:

-1- The ability to query: “show me all the WebLogic instances that run on a Windows host and don’t have patch xyz applied”. You don’t have much of a CMDB if you can’t answer this. For an analogy, remember (or imagine) a pre-1995 Web with no search engine, where you can only navigate by starting from your browser home page and clicking through static links step by step, or through bookmarks.

-2- The ability to retrieve the configuration change history and to compare configurations across resources (or to a reference configuration).

This is not to say that these two features cannot be built on top of a RESTful IT resource model. Just that they are the real meat of configuration management (rather than a simple resource-by-resource configuration browser) and that your brilliant re-architecture hasn’t really helped in addressing them. Does a RESTful foundation make these features harder to build? Not necessarily, but there are some tricky aspects to take care of:

-1- In hypermedia systems, the links are usually part of the resource representation, not resources of their own. In IT management, relationships/associations can have their own lifecycle and configuration properties.

-2- Be careful that you can really maintain the address of a resource. It’s one thing to make sure that a UUID gets maintained as a resource configuration changes, it’s another to ensure that a dereferenceable URI remains unchanged. For example, the admin server of a cluster may move over time from one node to another.

More fundamentally, the ability to deal with multiple resources at the same time and/or to use the model at different levels of granularity is often a challenge. Either you make your protocol more complex to account for this or your pollute your resource model (with a bunch of arbitrary “groups”, implicit or explicit).

We saw this in the Cloud APIs too. It typically goes something like this: you can address an individual server (called “foo”) by sending requests to http://Cloudprovider.com/server/foo. Drop the “foo” part of the URL and now you can address all the servers, for example to retrieve their configuration or possibly to reboot them. This gives me a way of dealing with multiple resources at time, but only along the lines pre-defined by the API. What if I want to deal only with the servers that host nodes of a given cluster. Sorry, not possible. What if the servers have different hosts in their URIs (remember, “the API doesn’t constrain the design of the URI space”)? Oops.

WS-Management, in the SOAP world, takes this one step further with Selectors, through which you can embed some kind of query, the result of which is what you are addressing in your message. Or, if all you want to do is GET, you can model you entire datacenter as one giant virtual XML doc (a document which is never assembled in practice) and use WSRF/WSDM’s “QueryExpression” or WS-Management’s “FragmentTransfer” to the same effect. BTW, I have issues with the details of how these mechanisms work (and I have described an alternative under the motto “if you are going to suffer with WS-Addressing, at least get some value out of it”).

These are all non-RESTful atrocities to a RESTafarian, but in my mind the Cloud REST API reviewed in part 1 have open Pandora’s box by allowing less-qualified URIs to address all instances of a class. I expect you’ll soon see more precise query parameters in these URIs and they’ll look a lot like WS-Management Selectors (e.g. http://Cloudprovider.com/server?OS=Linux&CPUType=X86). Want to take bets about when a Cloud API URI format with an embedded regex first arrives?

When you need this, my gut feeling is that you are better off not worrying too much about trying to look RESTful. There is no shame to using an RPC pattern in the right circumstances. Don’t be the stupid skier who ends up crashing in a tree because he is just too cool for the using snowplow position.

One of the most common reasons to deal with multiple resources together is to run queries such as the “show me all the WebLogic instances that run on a Windows host and don’t have patch xyz applied” example above. Such a query mechanism recently became a DMTF standard, it’s called CMDBf. It is SOAP-based and doesn’t attempt to have anything to do with REST. Not that it didn’t cross the mind of a bunch of people, lead by Michael Coté when CMDBf first emerged (read the comments too). But as James Governor rightly predicted in the first comment, Coté heard “dick” from us on this (I represented HP in CMDBf and ended up being an editor of the specification, focusing on the “query” part). I don’t remember reading the entry back then but I must have since I have been a long time Coté fan. I must have dismissed the idea so quickly that it didn’t even register with my memory. Well, it’s 2009 now, CMDBf v1 is a DMTF standard and guess what? I, and many other SOAP-the-world-till-it-shines alumni, are looking a lot more seriously into what’s in this REST thing (thus this series of posts for me). BTW in this piece Coté also correctly predicted that CMDBf would be “more about CMDB interoperation than federation” but that didn’t take as much foresight (it was pretty obvious to me from the start).

Frankly I am still not sure that there is much benefit from REST in what CMDBf does, which is mostly a query interface. Yes the CMDBf query and its response go over SOAP. Yes in this case SOAP is mostly a useless wrapper since none of the implementations will likely support any WS-* SOAP header (other than paying the WS-Addressing tax). Sure we could remove it and send plain XML over HTTP. Or replace the SOAP wrapper with an Atom wrapper. Would it be anymore RESTful? Not one bit.

And I don’t see how to make it more RESTful. There are plenty of things in the periphery the query operation that can be made RESTful, along the lines of what I described above. REST could make the discovery/reconciliation tasks of the CMDB more efficient. The CMDBf query result format could be improved so that from the returned elements I can navigate my way among resources by following hyperlinks. But the query operation itself looks fundamentally RPCish to me, just like my interaction with the Google search page is really an RPC call that happens to return a Web page full of hyperlinks. In a way, this query (whether Google or CMDBf) can at best be the transition point from RPC to REST. It can return results that open a world of RESTful requests to you, but the query invocation itself is not RESTful. And that’s OK.

In part 3 (now available), I will try to synthesize the lessons from the Cloud APIs (part 1) and configuration management (this post) and extract specific guidance to get the best of what REST has to offer in future IT management protocols. Just so you can plan ahead, in part 4 I will reform the US health care system and in part 5 I will provide a practical roadmap for global nuclear disarmament. Suggestions for part 6 are accepted.

11 Comments

Filed under API, Application Mgmt, Automation, Cloud Computing, CMDB, CMDB Federation, CMDBf, DMTF, Everything, IT Systems Mgmt, Mashup, Mgmt integration, Modeling, REST, SOAP, SOAP header, Specs, Standards, Utility computing

Cloud catalog catalyst or cloud catalog cataclysm?

Like librarians, we IT wonks tend to like things cataloged. To date, the last instance of this has been SOA governance and its various registries and repositories. With UDDI limping along as some kind of organizing standard for the effort. One issue I have with UDDI  is that its technical awkwardness is preventing us from learning from its failure to realize its ambitious goals (“e-business heaven”). It would be too easy to attribute the UDDI disappointment to UDDI. Rather, it should be laid at the feet of unreasonable initial expectations.

The SOA governance saga is still ongoing, now away from the spotlight and mostly from an implementation perspective rather than a standard perspective (by the way, what’s up with GIF?). Instead, the spotlight has turned to Cloud computing and that’s what we are supposedly going to control through cataloging next.

Earlier this year, I commented on the release of an ITSM catalog product for Cloud computing (though I was addressing the convergence of ITSM and Cloud computing more than catalogs per se).

More recently, Lori MacVittie related SOA governance to the need for Cloud catalogs. She makes some good points, but I also see some familiar-looking “irrational exuberance”. The idea of dynamically discovering and invoking a Cloud service reminds me too much of the initial “yellow pages” scenarios for UDDI (which quickly got dropped in favor of a more modest internal governance focus).

I am not convinced by the reason Lori gives for why things are different this time around (“one of the interesting things virtualization brings to the table that SOA did not is the ability to abstract management of services”). She argues that SOA governance only gave you access to the operational WSDL of a Web service, while Cloud catalogs will give you access to their management API. But if your service is an IT service, then your so-called management API (launch/configure/control VMs) is really its operational interface. The real management interface is the one Amazon uses under the cover and they are not going to expose it to you anymore than your bank is going to expose its application server administration console to you (if they do, move your money somewhere else before someone does it for you).

After all, isn’t SOA governance pretty close to a SaaS catalog which is itself a small part of the overall Cloud (IaaS+PaaS+SaaS) catalog question? If we still haven’t succeeded in the smaller scope, what are the odds of striking gold quickly in the larger effort?

Some analysts take a more pragmatic view, involving active brokers rather than simply a new DNS record type. I am doubtful about these brokers (0.2 probability, as Gartner would put it) but at least this moves the question onto business terms (leverage, control) rather than technical terms. Which is where the battle will be fought.

When it comes to Cloud catalogs, I think they are needed (if only for the categorization of Cloud services that they require) but will only play a supporting role, if any, in any move towards dynamic Cloud provisioning. As with SOA governance it’s as an internal tool, supported by strong processes, that they will be most useful.

Throughout human history, catalogs have been substitutes for control more often than instruments of control. Think of astronomy, zoology and… nephology for example. What kind will IT Cloud catalogs be?

2 Comments

Filed under Application Mgmt, Automation, Business, Cloud Computing, Everything, Governance, Manageability, Mgmt integration, Portability, Specs, Utility computing

A small step for SCA, a giant leap for BSM

In a very short post, Khanderao Kand describes how configuration properties for BPEL processes in Oracle SOA Suite 11G are attached to SCA components. Here is the example he provides:

<component name="myBPELServiecComponent">
  ...
  <property name="bpel.config.inMemoryOptimization">true</property>
</component>

It doesn’t look like much. But it’s an major step for application-driven IT management (and eventually BSM).

Take a SCA component. Follow the SCA-defined component-to-composite and service-to-reference relationships upwards and eventually you’ll get to top level application services that have a decent chance of mapping well to business-relevant activities (e.g. order processing). Which means that the metrics of these services (e.g. availability, response time) are likely to be meaningful and important to the line of business. Follow the same SCA relationships downward and you’ll end up (in a SCA-based infrastructure like Oracle SOA Suite 11G), with target components that are meaningful to the IT administrator. Which means that their metrics and configuration settings (like “inMemoryOptimization”) are tracked and controlled by IT. You now have a direct string of connections between this configuration setting and a business relevant metric. You can navigate the connection in both directions: downward/reactive (“my service just went down, what changed in the infrastructure”) versus upward/proactive (“my service is always slow, what can I do to optimize the execution”).

Of course these examples are over-simplistic (and the title of this post is a bit too lyrical, on account of this). Following these SCA relationships in brute-force fashion will yield tens of thousands of low-level configuration settings for any top-level service, with widely differing importance and impact (not to mention that they interact). You need rules to make sense of this. Plus, configuration-based models are a complement to runtime transaction discovery, not a replacement (unless your model of the application includes every single line of code). But it’s not that often that you can see a missing link snap into place that clearly.

What this shows is the emergence of a common set of entities between the developer’s model and the IT admin model. And if the application was developed correctly, some of the entities in the developer’s model correspond to entities in the mental model of the application user and the line of business manager. SCA is the skeleton for this. Attaching configuration to SCA components puts muscle on the bone.

The road to BSM is paved with small improvements in the semantic alignment between IT infrastructure and application services. A couple of years ago, I tried to explain why SCA is very relevant for IT management. Now we can see it.

4 Comments

Filed under Application Mgmt, BPEL, BSM, Business, Business Process, Everything, IT Systems Mgmt, Mgmt integration, Middleware, Modeling, Oracle, SCA, Standards

Anthology of blog posts about protocols and data formats

I just finished reading or re-reading a half-dozen great short texts about data formats and protocols, in the XML/RDF space.

I started with this “do we need WADL” post by Joe Gregorio (since the previous entry made me go back to WADL which is used by Rackspace). Under the guise of a Q&A about WADL, Joe’s post disposes of the notion that IDL-based code generation is any good (of course the reference on this topic is Steve’s Alpine paper, but Joe very elegantly captures the gist of it a few sentences). He then explains what it really take to specify a protocol (hint: it’s not just a syntax). This is about WSDL and XSD as much as WADL.

When I reached the point in Joe’s Q&A where he discusses whether one should ever create a new protocol, I remembered a post on this very topic from Tim Bray, which I easily Googled back to life. Two of them actually, one about why you shouldn’t do it and the other about how to do it since he knows his advice will be ignored. There are so many lessons in these that I won’t even attempt to summarize.

Tim’s second piece then delivered me to this excellent article about the various facets of RDF. It’s six years old but still true. Though if it was written today I expect it would add “graph query language” and possibly even “constraint language” as facets of RDF.

While I am at it, I should add to the list this to this bird-eye view of all the XML obstacles that pedestrians run into (I have highlighted this entry in a previous post).

These are all very well written articles by people who think very clearly about the domain. None of them technically taught me anything I didn’t know before, but they definitely helped me clarify my thoughts (and find the words to explain them to others).

We’re not artists. We’re not scientists. We’re not mathematicians. But there is some beauty in computer protocol design too. These writings are museum pieces, in the “lasting/worthwhile” sense of the term (not the “old/outdated” sense that it often has in the computing world). Don’t rush to read them, they are all several years old and have aged very well. Wait until you have the time to read them carefully.

I didn’t set out to create a best-of compilation of writings about protocols and data formats. I just happened to run into these great entries in a 30 minutes period and I was impressed by how much “above average” they all are. Is it luck? Does the topic of computer protocols naturally attract good thinkers and writers? Am I just in a good mood tonight? Who knows.

There must be others, possibly even better. Elliotte Rusty Harold occasionally surfaces one through his not-so-daily “quote of the day“. Suggestions for more articles of this caliber are welcome. A thousand monkeys may not be able to produce Hamlet, but a thousand bloggers may come close to an equivalent of Feynman’s lectures.

[UPDATED 2010/11/12: Over a year later, here’s an addition to this anthology. Stu’s succinct and beautiful explanation of the underlying issues with partial resource update (and REST in general).]

1 Comment

Filed under Articles, Everything, Protocols, RDF, Specs, Standards

REST in practice for IT and Cloud management (part 1: Cloud APIs)

In this entry I compare four public Cloud APIs (AWS EC2, GoGrid, Rackspace and Sun Cloud) to see what practical benefits REST provides for resource management protocols.

As someone who was involved with the creation of the WS-* stack (especially the parts related to resource management) and who genuinely likes the SOAP processing model I have a tendency to be a little defensive about REST, which is often defined in opposition to WS-*. On the other hand, as someone who started writing web apps when the state of the art was a CGI Perl script, who loves on-the-wire protocols (e.g. this recent exploration of the Windows management stack from an on-the-wire perspective), who is happy to deal with raw XML (as long as I get to do it with a good library), who appreciates the semantic web, and who values models over protocols the REST principles are very natural to me.

I have read the introduction and the bible but beyond this I haven’t seen a lot of practical and profound information about using REST (by “profound” I mean something that is not obvious to anyone who has written web applications). I had high hopes when Pete Lacey promised to deliver this through a realistic example, but it seems to have stalled after two posts. Still, his conversation with Stefan Tilkov (video + transcript) remains the most informed comparison of WS-* and REST.

The domain I care the most about is IT resource management (which includes “Cloud” in my view). I am familiar with most of the remote API mechanisms in this area (SNMP to WBEM to WMI to JMX/RMI to OGSI, to WSDM/WS-Management to a flurry of proprietary interfaces). I can think of ways in which some REST principles would help in this area, but they are mainly along the lines of “any consistent set of principles would help” rather than anything specific to REST. For a while now I have been wondering if I am missing something important about REST and its applicability to IT management or if it’s mostly a matter of “just pick one protocol and focus on the model” (as well as simply avoiding the various drawbacks of the alternative methods, which is a valid reason but not an intrinsic benefit of REST).

I have been trying to learn from others, by looking at how they apply REST to IT/Cloud management scenarios. The Cloud area has been especially fecund in such specifications so I will focus on this for part 1. Here is what I think we can learn from this body of work.

Amazon EC2

When it came out a few years ago, the Amazon EC2 API, with its equivalent SOAP and plain-HTTP alternatives, did nothing to move me from the view that it’s just a matter of picking a protocol and being consistent. They give you the choice of plain HTTP versus SOAP, but it’s just a matter of tweaking how the messages are serialized (URL parameters versus a SOAP message in the input; whether or not there is a SOAP wrapper in the output). The operations are the same whether you use SOAP or not. The responses don’t even contain URLs. For example, “RunInstances” returns the IDs of the instances, not a URL for each of them. You then call “TerminateInstances” and pass these instance IDs as parameters rather than doing a “delete” on an instance URL. This API seems to have served Amazon (and their ecosystem) well. It’s easy to understand, easy to use and it provides a convenient way to handle many instances at once. Since no SOAP header is supported, the SOAP wrapper adds no value (I remember reading that the adoption rate for the EC2 SOAP API reflect this though I don’t have a link handy).

Overall, seeing the EC2 API did not weaken my suspicion that there was no fundamental difference between REST and SOAP in the IT/Cloud management field. But I was very aware that Amazon didn’t really “do” REST in the EC2 API, so the possibility remained that someone would, in a way that would open my eyes to the benefits of true REST for IT/Cloud management.

Fast forward to 2009 and many people have now created and published RESTful APIs for Cloud computing. APIs that are backed by real implementations and that explicitly claim RESTfulness (unlike Amazon). Plus, their authors have great credentials in datacenter automation and/or REST design. First came GoGrid, then the Sun Cloud API and recently Rackspace. So now we have concrete specifications to analyze to understand what REST means for resource management.

I am not going to do a detailed comparative review of these three APIs, though I may get to that in a future post. Overall, they are pretty similar in many dimensions. They let you do similar things (create server instances based on images, destroy them, assign IPs to them…). Some features differ: GoGrid supports more load balancing features, Rackspace gives you control of backup schedules, Sun gives you clusters (a way to achieve the kind of manage-as-group features inherent in the EC2 API), etc. Leaving aside the feature-per-feature comparison, here is what I learned about what REST means in practice for resource management from each of the three specifications.

GoGrid

Though it calls itself “REST-like”, the GoGrid API is actually more along the lines of EC2. The first version of their API claimed that “the API is a REST-like API meaning all API calls are submitted as HTTP GET or POST requests” which is the kind of “HTTP ergo REST” declaration that makes me cringe. It’s been somewhat rephrased in later versions (thank you) though they still use the undefined term “REST-like”. Maybe it refers to their use of “call patterns”. The main difference with EC2 is that they put the operation name in the URI path rather than the arguments. For example, EC2 uses

https://ec2.amazonaws.com/?Action=TerminateInstances&InstanceId.1=i-2ea64347&…(auth-parameters)…

while GoGrid uses

https://api.gogrid.com/api/grid/server/delete?name=My+Server+Name&…(auth-parameters)…

So they have action-specific endpoints rather than a do-everything endpoint. It’s unclear to me that this change anything in practice. They don’t pass resource-specific URLs around (especially since, like EC2, they include the authentication parameters in the URL), they simply pass IDs, again like EC2 (but unlike EC2 they only let you delete one server at a time). So whatever “REST-like” means in their mind, it doesn’t seem to be “RESTful”. Again, the EC2 API gets the job done and I have no reason to think that GoGrid doesn’t also. My comments are not necessarily a criticism of the API. It’s just that it doesn’t move the needle for my appreciation of REST in the context of IT management. But then again, “instruct William Vambenepe” was probably not a goal in their functional spec

Rackspace

In this “interview” to announce the release of the Rackspace “Cloud Servers” API, lead architects Erik Carlin and Jason Seats make a big deal of their goal to apply REST principles: “We wanted to adhere as strictly as possible to RESTful practice. We iterated several times on the design to make it more and more RESTful. We actually did an update this week where we made some final changes because we just didn’t feel like it was RESTful enough”. So presumably this API should finally show me the benefits of true REST in the IT resource management domain. And to be sure it does a better job than EC2 and GoGrid at applying REST principles. The authentication uses HTTP headers, keeping URLs clean. They use the different HTTP verbs the way they are intended. Well mostly, as some of the logic escapes me: doing a GET on /servers/id (where id is the server ID) returns the details of the server configuration, doing a DELETE on it terminates the server, but doing a PUT on the same URL changes the admin username/password of the server. Weird. I understand that the output of a GET can’t always have the same content as the input of a PUT on the same resource, but here they are not even similar. For non-CRUD actions, the API introduces a special URL (/servers/id/action) to which you can POST. The type of the payload describes the action to execute (reboot, resize, rebuild…). This is very similar to Sun’s “controller URLs” (see below).

I came out thinking that this is a nice on-the-wire interface that should be easy to use. But it’s not clear to me what REST-specific benefit it exhibits. For example, how would this API be less useful if “delete” was another action POSTed to /servers/id/action rather than being a DELETE on /servers/id? The authors carefully define the HTTP behavior (content compression, caching…) but I fail to see how the volume of data involved in using this API necessitates this (we are talking about commands here, not passing disk images around). Maybe I am a lazy pig, but I would systematically bypass the cache because I suspect that the performance benefit would be nothing in comparison to the cost of having to handle in my code the possibility of caching taking place (“is it ok here that the content might be stale? what about here? and here?”).

Sun

Like Rackspace, the Sun Cloud API is explicitly RESTful. And, by virtue of Tim Bray being on board, we benefit from not just seeing the API but also reading in well-explained details the issues, alternatives and choices that went into it. It is pretty similar to the Rackspace API (e.g. the “controller URL” approach mentioned above) but I like it a bit better and not just because the underlying model is richer (and getting richer every day as I just realized by re-reading it tonight). It handles many-as-one management through clusters in a way that is consistent with the direct resource access paradigm. And what you PUT on a resource is closely related to what you GET from it.

I have commented before on the Sun Cloud API (though the increasing richness of their model is starting to make my comments less understandable, maybe I should look into changing the links to a point-in-time version of Kenai). It shows that at the end it’s the model, not the protocol that matters. And Tim is right to see REST in this case as more of a set of hygiene guidelines for on-the-wire protocols then as the enabler for some unneeded scalability (which takes me back to wondering why the Rackspace guys care so much about caching).

Anything learned?

So, what do these APIs teach us about the practical value of REST for IT/Cloud management?

I haven’t written code against all of them, but I get the feeling that the Sun and Rackspace APIs are those I would most enjoy using (Sun because it’s the most polished, Rackspace because it doesn’t force me to use JSON). The JSON part has two component. One is simply my lack of familiarity with using it compared to XML, but I assume I’ll quickly get over this when I start using it. The second is my concern that it will be cumbersome when the models handled get more complex, heterogeneous and versioned, chiefly from the lack of namespace support. But this is a topic for another day.

I can’t tell if it’s a coincidence that the most attractive APIs to me happen to be the most explicitly RESTful. On the one hand, I don’t think they would be any less useful if all the interactions where replaced by XML RPC calls. Where the payloads of the requests and responses correspond to the parameters the APIs define for the different operations. The Sun API could still return resource URLs to me (e.g. a VM URL as a result of creating a VM) and I would send reboot/destroy commands to this VM via XML RPC messages to this URL. How would it matter that everything goes over HTTP POST instead of skillfully choosing the right HTTP verb for each operation? BTW, whether the XML RPC is SOAP-wrapped or not is only a secondary concern.

On the other hand, maybe the process of following REST alone forces you to come up with a clear resource model that makes for a clean API, independently of many of the other REST principles. In this view, REST is to IT management protocol design what classical music training is to a rock musician.

So, at least for the short-term expected usage of these APIs (automating deployments, auto-scaling, cloudburst, load testing, etc) I don’t think there is anything inherently beneficial in REST for IT/Cloud management protocols. What matter is the amount of thought you put into it and that it has a clear on-the-wire definition.

What about longer term scenarios? Wouldn’t it be nice to just use a Web browser to navigate HTML pages representing the different Cloud resources? Could I use these resource representations to create mashups tying together current configuration, metrics history and events from wherever they reside? In other words, could I throw away my IT management console because all the pages it laboriously generates today would exist already in the ether, served by the controllers of the resources. Or rather as a mashup of what is served by these controllers. Such that my IT management console is really “in the cloud”, meaning not just running in somebody else’s datacenter but rather assembled on the fly from scattered pieces of information that live close to the resources managed. And wouldn’t this be especially convenient if/when I use a “federated” cloud, one that spans my own datacenter and/or multiple Cloud providers? The scalability of REST could then become more relevant, but more importantly its mashup-friendliness and location transparency would be essential.

This, to me, is the intriguing aspect of using REST for IT/Cloud management. This is where the Sun Cloud API would beat the EC2 API. Tim says that in the Sun Cloud “the router is just a big case statement over URI-matching regexps”. Tomorrow this router could turn into five different routers deployed in different locations and it wouldn’t change anything for the API user. Because they’d still just follow URLs. Unlike all the others APIs listed above, for which you know the instance ID but you need to somehow know which controller to talk to about this instance. Today it doesn’t matter because there is one controller per Cloud and you use one Cloud at a time. Tomorrow? As Tim says, “the API doesn’t constrain the design of the URI space at all” and this, to me, is the most compelling long-term reason to use REST. But it only applies if you use it properly, rather than just calling your whatever-over-HTTP interface RESTful. And it won’t differentiate you in the short term.

The second part in the “REST in practice for IT and Cloud management” series will be about the use of REST for configuration management and especially federation. Where you can expect to read more about the benefits of links (I mean “hypermedia”).

[UPDATE: Part 2 is now available. Also make sure to read the comments below.]

35 Comments

Filed under Amazon, API, Cloud Computing, Everything, IT Systems Mgmt, Manageability, Mgmt integration, REST, SOA, SOAP, SOAP header, Specs, Utility computing, Virtualization

YACSOE

Yet another cloud standards organization effort. This one is better than the others because it has the best domain name.

A press release to announce a Wiki. Sure. Whatever. Electrons are cheap.

Cynicism aside, it can’t hurt. But what would be really useful is if all these working groups opened up their mailing list archives and document repositories so that the Wiki can be a launching pad to actual content rather than a set of one-line descriptions of what each group is supposed to work on. With useful direct links to the most recent drafts and lists of issues under consideration. Similar to the home page of a W3C working group, but across groups. Let’s hope this is a first step in that direction.

I am also interested in where they’ll draw the line between Cloud computing and IT management. If such a line remains.

2 Comments

Filed under Cloud Computing, DMTF, Everything, Grid, Manageability, Mgmt integration, Specs, Standards, Utility computing, Virtualization, W3C

The CMDBf specification is now a DMTF standard

The CMDBf specification has finished its trek through the DMTF standard process. The last step was board approval and finally here is the official DMTF standard. It’s called version 1.0.0 which is a bit confusing since the version submitted to DMTF was dubbed “version 1.0”. I guess it means that this standard is the first version of the DMTF specification called CMDBf.

If you have been following the process closely, then you won’t find many technical changes since the last public draft. If you last read the specification when it was submitted to DMTF, then you’ll notice several improvements but no drastic change. If you are yet to take a first look at CMDBf, now is the perfect time.

To help you in that endeavor, I plan to update the query pseudo-algorithm to conform to the standard version of the specification when I get a chance. In the meantime, the slightly-outdated one is probably still helpful in wrapping your mind around the query mechanism.

Gentle(wo)men, rev your (query) engines.

Comments Off on The CMDBf specification is now a DMTF standard

Filed under CMDB, CMDB Federation, CMDBf, DMTF, Everything, IT Systems Mgmt, Specs, Standards

File upload/download and remote program execution using WS-Management – a practical solution

The previous blog post described a way to upload and (in theory at least) download text files to/from a remote Windows machine using WS-Management. In practice, the applicability of the method is  limited for upload (text files only, slow for large files) and almost nonexistent for download. Here is a much improved version.

This is another example of something that was too obvious for me to see last weekend when I was in the thick of fighting with WS-Management SOAP messages and learning about WMI classes. It just took a day of not thinking about it to have the solution pop in my mind: use ftp.exe. For the longest time (at least since Windows NT) Windows has been shipping with this FTP client. And the documentation shows that you can call it from the command line and provide it with the name of a text file containing the commands to execute. Bingo.

Specifically, here are the steps. Let’s say that I want to run a program called task.exe on a remote Windows machine and that program takes a large binary file (data.bin) as input. I want to transfer both to the remote machine and then run the program. This can be done in 3 simple steps:

Step 1: upload the FTP command file to the remote Windows machine. The content of the command file is below. mgmtserver.myco.com is the name of the machine from which the two files can be retrieved over FTP. I use anonymous FTP here, but you could just as well provide a username and password.

open mgmtserver.myco.com
anonymous
binary
get task.exe
get data.bin
quit

Step 2: execute the FTP commands above. This downloads task.exe and data.bin from mgmtserver.myco.com onto the remote Windows machine.

Step 3: execute the program on the remote Windows machine (“task.exe data.bin”).

Here are the on-the-wire messages corresponding to each step:

Step 1: upload the FTP command file to the remote Windows machine

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
  xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing"
  xmlns:w="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
  <s:Header>
    <a:To>http://server:80/wsman</a:To>
    <w:ResourceURI s:mustUnderstand="true">http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process </w:ResourceURI>
    <a:ReplyTo>
    <a:Address s:mustUnderstand="true">http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</a:Address>
    </a:ReplyTo>
    <a:Action s:mustUnderstand="true">http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process/Create</a:Action>
    <a:MessageID>uuid:9A989269-283B-4624-BAC5-BC291F72E854</a:MessageID>
  </s:Header>
  <s:Body>
    <p:Create_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process">
      <p:CommandLine>cmd /c echo open mgmtserver.myco.com>ftpscript&amp;&amp;echo
      anonymous>>ftpscript&amp;&amp;echo binary>>ftpscript&amp;&amp;echo get
      task.exe>>ftpscript&amp;&amp;echo get data.bin>>ftpscript&amp;&amp;echo
      quit>>ftpscript</p:CommandLine>
      <p:CurrentDirectory>C:datawinrm-test</p:CurrentDirectory>
    </p:Create_INPUT>
  </s:Body>
</s:Envelope>

As before, you need to set the Content-Type HTTP header to “application/soap+xml;charset=UTF-8” (or UTF-16).

Step 2: execute the FTP commands to download the files from your server

It’s the same message, except the <p:CommandLine> element now has this value:

<p:CommandLine>ftp -s:ftpscript</p:CommandLine>

Step 3: execute the task.exe program on the remote Windows machine

Again, the same message except that the command line is simply:

<p:CommandLine>C:datawinrm-testtask.exe data.bin</p:CommandLine>

Note that I have broken this down in three messages for clarity, but you can easily bundle all three steps in one SOAP message. Just use this command line:

<p:CommandLine>cmd /c echo open mgmtserver.myco.com>ftpscript&amp;&amp;echo
anonymous>>ftpscript&amp;&amp;echo binary>>ftpscript&amp;&amp;echo get
task.exe>>ftpscript&amp;&amp;echo get data.bin>>ftpscript&amp;&amp;echo
quit>>ftpscript&amp;&amp;ftp -s:ftpscript&amp;&amp;C:datawinrm-testtask.exe
data.bin</p:CommandLine>

Of course this can also be used in reverse, to download files from the remote Windows machine rather than upload files to it. Just use PUT or MPUT as FTP commands instead of GET or MGET.

This mechanism is a major improvement, for many use cases, over what I originally described. I feel a bit like someone who just changed a flat tire by loosening the lug nuts with his teeth and then found the lug wrench under the spare tire.

2 Comments

Filed under Everything, Implementation, IT Systems Mgmt, Manageability, Microsoft, Portability, SOAP, Standards, WS-Management

Uploading a file to a Windows machine via WMI/WS-Management

[UPDATED 2009/6/30: Check the following post for a more practical solution.]

Here is a simple way to upload a text (i.e. not binary) file to a Windows machine. Because my interest is to be able to do it from any platform, I investigated the use of WS-Management. But the method relies on invoking WMI methods over WS-Management, so I don’t see why it would not also work in a straight WMI scenario if you prefer.

I am not a Windows management expert, so there may be a much better way to do this (e.g. BITS). But if what you’re after is the simplest possible way to drop a file on a Windows machine it from a non-Windows machine, it doesn’t get much simpler than sending an XML doc over HTTP and calling it a day. Here is how.

The easiest would be if the CIM_DataFile WMI class had a “create” method to create a new file. It doesn’t. But Win32_Process does. Invoking this method creates a new process and you get to specify the command line to execute. All you need to do is come up with a command line that invokes a program that will create the file that you want to upload.

There may be alternatives, but the command line I came up with for this purpose uses the “cmd.exe” interpreter (the Windows command-line shell). By using the “/c” option, you can invoke this interpreter with its instructions as parameters directly on the command line (it gets a bit confusing because we have two “command lines” here, the one that is used to launch the “cmd.exe” shell and the one that is presented inside the “cmd.exe” shell).

Anyway, if you type the following line inside the “start/run” field in Windows

cmd /c echo 1st line > test1.txt

It will have the same effect as opening a command shell, typing “echo 1st line > test1.txt” in it and the closing it. It creates a new file called “test1.txt” with one line of content (“1st line”). If you want a second line, you can do this by adding a second command that uses “>>” (append) instead of “>”. And the two commands can be joined by “&&” to invoke them in one pass. So to create a file with three lines, we’d execute:

cmd /c echo 1st line > test1.txt && echo 2nd line >> test1.txt
&& echo 3rd line >> test1.txt

Now all we have to do is package this in a WS-Management SOAP message and post it to the WS-Management listener of the Windows machine. In the process, we have to escape the “&” in the command line to “&amp;” because of XML syntax rules. The resulting message looks like:

<s:Envelope
  xmlns:s="http://www.w3.org/2003/05/soap-envelope"
  xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing"
  xmlns:w="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
<s:Header>
<a:To>http://localhost/wsman</a:To>
<w:ResourceURI s:mustUnderstand="true">
  http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process
</w:ResourceURI>
<a:ReplyTo>
<a:Address s:mustUnderstand="true">
  http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
</a:Address>
</a:ReplyTo>
<a:Action s:mustUnderstand="true">
  http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process/Create
</a:Action>
<a:MessageID>uuid:9A989269-283B-4624-BAC5-BC291F72E854</a:MessageID>
</s:Header>
<s:Body>
<p:Create_INPUT
  xmlns:p="http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process">
<p:CommandLine>cmd /c echo 1st line > test1.txt &amp;&amp; echo 2nd line >>
  test1.txt &amp;&amp; echo 3rd line >> test1.txt</p:CommandLine>
<p:CurrentDirectory>C:datawinrm-test</p:CurrentDirectory>
</p:Create_INPUT>
</s:Body>
</s:Envelope>

You don’t even need a WS-Management toolkit to do this as the only WS-Management header is w:ResourceURI which can easily be set manually. You don’t need a WS-Addressing library either as all the headers are also static (except for the MessageID even though nobody will care in practice if you always send the same value; I hereby authorize you to re-use the one in my example as much as you want). As a side note, this is yet another illustration of how useless this header (and more generally WS-Addressing) is in 95% of the case. And yet the Microsoft WS-Management implementation (like many others) will make a point to fault if you don’t send it. But ranting against WS-Addressing is a topic for another day (look for a future post titled “WS-IfInteroperabilityWasEasyItWouldNotBeFunWouldIt”).

I should mention that you want to set the Content-Type HTTP header to “application/soap+xml;charset=UTF-8” for this message. Or UTF-16 if that’s what you’re sending.

A few comments:

  • This obviously only works for character-based files, not binaries
  • I’ve noticed that the parsing of the wsa:Action header is pretty minimalistic. The Microsoft implementation seems to just pick up the text behind the last “/”. So you can type send “blahblah/Create” and it works just as well as the correct value, “http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process/Create” (it knows what class to apply the operation on from the Resource URI). Interestingly, there is only one URL ending in “/Create” that doesn’t work and it’s the WS-Transfer “Create” operation (“http://schemas.xmlsoap.org/ws/2004/09/transfer/Create”). That’s because the “Create” operation invoked in the message above is not the WS-Transfer “Create” operation but rather the homonymous operation on the WMI class.
  • Using the “/k” modifier on “cmd” in the command line (instead of “/c”) would also work, but the command shell would stay alive after returning so over time you’d have quite a few of them hanging out and using up memory on the remote machine. Not a good move.
  • As part of this exercise, I noticed an error in the MSDN page describing the “invoke” method of Win32_Process. In the SOAP body, the URI for the “p” namespace prefix uses “…/cim/…” instead of “…/cimv2/…”, which caused my first attempts to fail.

If the file you want to upload is large, you can break the upload over several successive messages similar to the one above. As long as you use the same file name and use “>>” instead of “>” you’ll keep appending to the end of the file until it’s complete.

Of course this could be any type of text file, including XML (watch for the character-escaping rules though, both for XML and for “cmd” as you have to apply them in the right sequence). Even better, it could be a Python, Perl or PowerShell script too. And in that case (assuming the corresponding interpreter is installed on the machine) you can use the same mechanism to also invoke the script for execution. So that you use this WS-Management interface just to bootstrap into a more comfortable remote-control mechanism.

The next logical question (for extra credit) is whether WS-Management can be used to read files remotely instead of writing them. In theory yes, though in practice you’re much better off with alternate solutions, like the remote shell extension to WS-Management that I have described as “dumb SSH” previously.

But since you ask, here is the theory. My first attempt was to do a WS-Management “Get” (the Get operation from WS-Transfer) on an instance of CIM_DataFile (using the “Name” selector and setting it to “C:datawinrm-testtest1.txt”). But this returns the properties of the file rather than its content. Whether this is kosher is an interesting theoretical question to ponder from a REST-beard-stroking perspective, but it’s useless for my file retrieval purpose. As before, one solution is to use the magical Win32_Process “Create” method to overcome the shortcomings of the CIM_DataFile class. The windows command shell “type” command can be used to display the content of a text file. But the WMI Win32_Process “create” operation that we use here only returns the processId and a result code, not the stdout stream (unlike the remote shell protocol that I mentioned above). We cannot therefore use it directly to return the output of the “type” command over the wire.

The solution is to use one Win32_Process “create” operation over WS-Management to write the content of the file in a place where a subsequent WS-Management opeation can read it. I can think of two examples off the top of my head: directory names and environment variables.

Here is how you’d do it with directory names. The following command takes the test1.txt file, reads it and creates nested subdirectories, one for each line in the input file. The name of the directory is the content of the corresponding line in the file.

for /f "delims=" %I in (test1.txt) do @mkdir "%I" && cd "%I"

For example, if the file content is

1st line
2nd line
3rd line

The command will generate the following three subdirectories:

1st line
  |_ 2nd line
      |_ 3rd line

What’s the point? You can use WS-Management enumeration to retrieve the names of all directories (using the Win32_Directory WMI class). Now that may be a bit overwhelming, so you want to add a WS-Enumeration filter to your WS-Management request. The Microsoft WS-Management implementation supports the WQL filter syntax that lets you do just that.

BTW, you can presumably do the same thing with files, but directories by their nesting make it easy to read the lines in the order in which their appear in the file. Though you’d quickly run into path length limitations (and characters that are not valid in file/directory names).

A slightly more robust approach may be to set each line of the file in an environment variable (again via the “for”, and using “set” after the “do”). You can then read these environment variables over WS-Management by doing a WS-Transfer Get on the Win32_Environment WMI class. Unlike CIM_DataFile (for which Get only return properties, not the content), a Get on Win32_Environment includes the value of the environment variable as one of the properties. The pragmatic reasons for this dichotomy are obvious, but the architectural consequences will give a headache to anyone who still has any illusion that WS-Transfer has anything to do with REST.

As a side note, the “for” instruction can keep no more than 52 variables at a time, so if your file has more than 52 lines you’d have to send successive WS-Management requests and add a “skip” option to the “for” operation on subsequent requests (“skip=52”, “skip=104”, etc…). Again, practicality isn’t much of a concern here, we’re just playing with theory (Ed: “we”? how many people do you expect will still be reading at this point?).

That’s it for today’s episod of “Windows management for the on-the-wire-protocol guy”. Maybe next weekend I’ll take some time to look more into the remote shell over WS-Management protocol extention and how it can be misued/abused.

[UPDATE: The next post describes a more practical approach.]

5 Comments

Filed under DMTF, Everything, Implementation, IT Systems Mgmt, Manageability, Microsoft, SOAP header, Specs, Standards, WS-Management

Whose ******* idea was this?

My last two entries have been uncharacteristically Microsoft-friendly, so it’s time to restore some balance. Coincidentally, I just noticed the latest “alertbox” entry by Jakob Nielsen, about putting an end to password masking (the ******* that appears when you type a password). I actually disagree with Nielsen on this (it’s not just about shoulder-surfing, who hasn’t had to enter a password while sharing their desktop via a projector or a webex-like conference service; plus I either know my password very well or I paste it directly from a password management tool, either way the lack of visual feedback doesn’t bother me).

But, and this is where the Microsoft-bashing starts, there is one area where password-masking is inane: wifi keys. Unlike passwords, these are never things that you have picked yourself, so they are harder to type, often hexadecimal (the one I chose, for my home network, I never have to type).  And where do we do this? Either in a meeting room, where the key is written on the white board, or in a dentist waiting room, where it is pinned on the wall. In almost all cases, everyone in the room has access to the key. And if it is not on a wall, then it is on a piece of paper that’s right next to my computer and easier to snoop from. Masking this field, as Windows XP does, is plain stupid.

But stupidity turns into depravity and sadism when they force you to type it twice. I understand the reason for entering passwords twice when you initially set them in the system (accidentally entering a different password than what you intended can be trouble). But not when you provide them as a user requesting access (accidentally entering the wrong password just means you have to try again). So why does Windows insist on this? In the best case (I enter the key correctly twice) I’ve had to do double work for the same result. In the worst case (at least one is mistyped) I am in no better situation than if there was only one field but I have done twice the work. And this worst case is twice as likely to happen, since I have twice the opportunity to foul-up.

When confronted with this, I usually type the key in a regular text box (e.g. the search box in Firefox) and copy-paste from there to both fields in the Windows dialog box. But I shouldn’t have to.

While I am at it, do you also want to read what I think about the practice, initiated by MS Word as far as I can tell, to include formatting in copy/paste by default? And how deep you have to go in the “paste special” menu to get the obviously superior behavior (unformatted text)? Not really? Ok, I’ll save that for a future rant. Let’s just say that this idea must have come from a relative of the Windows wifi-key-screen moron. Just give me their names and I’ll be the arm of Darwinism.

[UPDATED 2009/6/26: Bruce Schneier agrees with Jakob Nielsen. So this is an issue at the confluence of security and usability on which both security guru Schneier and usability guru Nielsen are wrong. Gurus can’t always be right, but what’s the chance of them being wrong at the same time?]

2 Comments

Filed under Everything, Microsoft, Off-topic

Native “SSH” on Windows via WS-Management

Did you know that you can now SSH to a Windows machine over WS-Management and its is a documented protocol that can be implemented from any platform and programming language? This is big news to me and I am surprised that, as management protocol geek, I hadn’t heard about it until I started to search MSDN for a related but much smaller feature (file transfer over WS-Management).

OK, so it’s not exactly SSH but it is a remote shell. In fact it comes in two flavors, which I think of as “dumb SSH” and “super SSH”.

Dumb SSH

Dumb SSH is the ability to remotely run a DOS-like command shell over WS-Management. Anyone who has had to use the Windows command shell as a scripting language ersatz understands why I call it “dumb”. I expect that even in Microsoft most would agree (otherwise why would they have created PowerShell?).

Still, you can do quite a few basic things using the Windows command shell and being able to do them remotely is not something to sneer at if you’re building a management product. If you’re interested, you need to read MS-WSMV, the WS-Management Protocol Extensions for Windows Vista specification (available here as a PDF). By the name of the specification, I expected a laundry list of tweaks that the WS-Management and WS-CIM implementation in Vista makes on top of the standards (e.g. proprietary extensions, default values, unsupported features, etc). And there is plenty of that, in sections 3.1, 3.2 and 3.3. The kind of “this is my way” decisions that you’d come to expect from Microsoft on implementing standards. A bit frustrating when you know that they pretty much wrote the standard but at least it’s well documented. Plus, being one of those that forced a few changes in WS-Management between the Microsoft submission and the DMTF standard (under laments from Microsoft that “it’s too late to change Longhorn”) I am not really in position to complain that “Longhorn” (now Vista) indeed deviates from the standard.

But then we get to section 3.4 and we enter a new realm. These are not tweaks to WS-Management anymore. It’s a stateful tunneling protocol going over WS-Management, complete with base-64-encoded streams (stdin, stdout, stderr) and signals. It gives you all you need to run a remote command shell over WS-Management. In addition to the base Windows command shell, it also supports “custom remote shells”, which lets you leverage the tunneling mechanism for another protocol than the one made of Windows shell commands. For example, you could build an HTTP emulation over this on top of which you could run WS-Management on top of which… you know where this is going, don’t you?

A more serious example of such a “custom remote shell” is PowerShell, which takes us to…

Super SSH

Imagine SSH with the guarantee that the shell that you log into on the other side was a Python interpreter, complete with full access to the server’s management API. I think that would qualify as “super SSH”, at least for IT management purposes (no so exciting if all you want to do is check your email with mutt). This is equivalent to what you get when the remote shell invoked over WS-Management (or rather WS-Management plus Vista extensions described above) is PowerShell instead of the the Windows command shell. I have always liked PowerShell but it hasn’t really be all that relevant to me (other than as a design study) because of its ties to the Windows platform. Now, thanks to MS-PSRP, the PowerShell Remoting Protocol specification (PDF here) we are only a good Java (or Python, or Ruby) library away from being able to invoke PowerShell commands from any language, anywhere.

I have criticized over-reliance on libraries to shield developers from XML for task that really would be much better handled by simply learning to use XML. But in this case we really need a library because there is quite a bit of work involved in this protocol, most of which has nothing to do with XML. We have to fragment/defragment packets, compress/decompress messages, not to mention the security aspects. At this point you may question what the value of doing all this on top of WS-Management is, for which I respectfully redirect you to your local Microsoft technology evangelist, MVP or, in last resort, sales representative.

Even if PowerShell is not your scripting language of choice, you can at least use it to create a bootstrap mechanism that will install whatever execution engine you want (e.g. Ruby) and download scripts from your management server. At which point you can sign out of PowerShell. For some reason, I get the feeling that we just got one step closer to Puppet managing Windows machines.

A few closing comments

First, while the MS-WSMV part that lets you run a basic command shell seems already available (Vista SP1, Win2K3R2, Win2K8, etc), the PowerShell part is a lot greener. The MS-PSRP specification is marked “preliminary” and the supported platform list only contains Windows 7 and Win2K8R2. Nevertheless, the word from Microsoft is that they have the intention to make this available on XP and above shortly after Windows 7 comes out. Let’s hope this is the case, otherwise this technology will remain largely irrelevant for years to come.

The other caveat comes from the standard angle. In this post, I only concern myself with the technical aspects. If you want to implement these specifications you have to also take into account that they are proprietary specifications with no IP grant (“Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft’s delivery of the documentation grants any licenses under those or any other Microsoft patents”) and fully controlled by Microsoft (who could radically change or kill them tomorrow). As to whether Microsoft plans to eventually standardize them, I would again refer you to your friendly local Microsoft representative. I can just predict, based on the content of the specification, that it would make for some interesting debates in the DMTF (or wherever they may go).

This is a big step towards the citizenship of Windows machines in an automated datacenter (and, incidentally, an endorsement for the “these scripts have to grow up” approach to automation). As Windows comes to parity with Unix in remote scripting abilities, the only question remaining (well, in addition to the pesky license) will be “why another mechanism”. Which could be solved either via standardization of MS-PSRP, de-facto adoption (PowerShell on Suse Linux is only one Microsoft-to-Novell check away) or simply using PowerShell as just a bootstrapping mechanism for Puppet or others, as mentioned above.

[UPDATE: On a related topic, these two posts describe ways to transfer files over WS-Management.]

8 Comments

Filed under Automation, DMTF, Everything, Implementation, IT Systems Mgmt, Manageability, Mgmt integration, Microsoft, Portability, Specs, Standards, WS-Management

With M (Oslo), is Microsoft on the path to reinventing RDF?

I have given up, at least for now, on understanding what Microsoft wants Oslo (and more specifically the “M” part) to be. I used to pull my hair reading inconsistent articles and interviews about what M tries to be (graphical programming! DSL! IT models! generic parser! application components! workflow! SOA framework! generic data layer! SQL/T-SQL for dummies! JSON replacement! all of the above!). Douglas Purdy makes a valiant 4-part effort (1, 2, 3, 4) but it’s still not crisp enough for my small brain. Even David Chapell, explainer extraordinaire, seems to throw up his hands (“a modeling platform that can be applied in lots of different ways”, which BTW is the most exact, if vague, description I’ve heard). Rather than articles, I now mainly look at the base specifications and technical documents that show what it actually is. That’s what I did  when the Oslo SDK first came out last year. A new technical document came out recently, an update to the MGraph Object Model so I took another a look.

And it turns out that MGraph is… RDF. Or rather, “RDF minus entailment”. And with turtle as the base representation rather than an add-on.

Look at section 3 (“RDF concepts”) in this table of content from W3C. It describes the core RDF concepts. Keep the first five concepts (sections 3.1 to 3.5) and drop the last one (“3.6: Entailment”). You have MGraph, a graph-oriented object model.

On top of this, the RDF community adds reasoning capabilities with RDF entailment, RDFS, OWL, SWRL, SPIN, etc and a variety of engines that implement these different levels of reasoning.

Microsoft, on the other hand, seems to ignore that direction. Instead, it focuses on creating a good mapping from this graph object model to programming languages. In two directions:

  • from programming languages to the graph model: they make it easy for you to create a domain-specific language (DSL) that can easily be turned into M instances.
  • from the graph model to programming languages: they make it easy for you to work on these M instances (including storing them) using the .NET technology stack.

So, if Microsoft is indeed reinventing RDF as the title of this entry provocatively suggests, then they are taking an interesting detour on the way. Rather than going straight to “model-based inferencing”, they are first focusing on mapping the core MGraph concepts to programming (by regular developers) and user interactions (with regular users). Something that for a long time had not gotten much attention in the RDF world beyond pointing developers to Jena (though it seemed to have improved over the last few years with companies like TopQuadrant; ironically, the Oslo model browser/editor is code-named “Quadrant”).

Whether the Oslo team sees the inferencing fun as a later addition or something that’s not needed is another question, on which I don’t see any hint at this point.

I hope they eventually get to it. But I like the fact that they cleanly separate the ability to represent and manipulate the graph model from the question of whether instances can be inferred. We could use such a reusable graph representation mechanism. Did CMDBf, for example, really have to create a new graph-oriented metamodel and query language? I failed to convince the group to adopt RDF/SPARQL, but I may have been more successful if there had been a cleanly-separated “static” version of RDF/SPARQL, a way to represent and query a graph independently of whether the edges and nodes in the graph (and their types) are declared or inferred. Instead, the RDF stack has entailment deeply embedded and that’s very scary to many.

But as much as I like this separation, I can’t help squirming when I see the first example in the MGraph document:

// Populate a small village with some people
Villagers => {
  Jenn => Person { Name => 'Jennifer', Age => 28, Spouse => Rich },
  Rich => Person { Name => 'Richard', Age => 26, Spouse => Jenn },
  Charly => Person { Name => 'Charlotte', Age => 12 }
},
HaveSpouses => { Villagers.Rich, Villagers.Jenn }

That last line is an eyesore to anyone who has been anywhere near RDF. I have just declared that Rich and Jenn are one another’s spouse, why do I have to add a line that says that they have spouses? What I want is to say that participation in a “Spouse” relationship entails membership in the “hasSpouse” class. And BTW, I also want to mark the “Spouse” relationship as symmetric so I only have to declare it one way and the inverse can be inferred.

So maybe I don’t really know what I want on this. I want the graph model to be separated from the inference logic and yet I want the syntactic simplicity that derives from base entailments like the example above. Is June too early to start a Christmas wish list?

While I am at it, can we please stop putting people’s ages in the model rather than their dates of birth? I know it’s just an example, but I see it over and over in so many modeling examples. And it’s so wrong in 99% of cases. It just hurts.

There are other things about MGraph edges that look strange if you are used to RDF. For example, edges can be labeled or not, as illustrated on this first example of the graph model:

In this example, “Age” is a labeled edge that points to the atomic node “42”, while the credit score is modeled as a non-atomic node linked from the person via an unlabeled edge. Presumably the “credit score” node is also linked to an atomic node (not shown) that contains the actual score value (e.g. “800”). I can see why one would want to call out the credit score as a node rather than having an edge (labeled “credit score”) that goes to an atomic node containing the actual credit score value (similar to how “age” is handled). For one thing, you may want to attach additional data to that “credit score” node (when was it calculated, which reporting agency provided it, etc) so it helps to have it be a node. But making this edge unlabeled worries me. Originally you may only think of one possible relationship type between a person and a credit score (the person has a credit score). But other may pop up further down the road, e.g. the person could be a loan agent who orders the credit score but the score is about a customer. So now you create a new edge label (“orders”) to link the loan agent person to the credit score. But what happens to all the code that was written previously and navigates the relationship from the person to the score with the expectation that the score is about the person. Do you think that code was careful to only navigate “unlabeled” edges? Unlikely. Most likely it just grabbed whatever credit score was linked to the person. If that code is applied to a person who happens to also be a loan agent, it might well grab a credit score about other people which happened to be ordered by the loan agent. These unlabeled edges remind me of the practice of not bothering with a “version” field in the first version of your work because, hey, there is only one version so far.

The restriction that a node can have at most one edge with a given label coming out of it is another one that puzzles me. Though it may explain why an unlabeled edge is used for the credit score (since you can get several credit scores for the same person, if you ask different rating agencies). But if unlabeled edges are just a way to free yourself from this restriction then it would be better to remove the restriction rather than work around it. Let’s take the “Spouse” label as an example. For one thing in some countries/cultures having more than one such edge might be possible. And having several ex-spouses is possible in many places. Why would the “ex-spouse” relationship have to be defined differently from “spouse”? What about children? How is this modeled? Would we be forced to have a chain of edges from parent to 1st child to next sibling to next sibling, etc? Good luck dealing with half-siblings. And my model may not care so much about capturing the order (especially if the date of birth is already captured anyway). This reminds me of how most XML document formats force element order in places where it is not semantically meaningful, just because of XSD’s bias towards “sequence”.

Having started this entry by declaring that I don’t understand what M tries to be, I really shouldn’t be criticizing its design choices. The “weird” aspects I point out are only weird in the context of a certain usage but they may make perfect sense in the usage that the Oslo team has in mind. So I’ll stop here. The bottom line is that there are traces, in M, of a nice, reusable, graph-oriented data model with strong bridges (in both directions) to programming languages and user interfaces. That is appealing to me. There are also some strange restrictions that puzzle me. We’ll see where this goes (hopefully this article, “Designing Domains and Models Using M” will soon contain more than “to be submitted” and I can better understand the M approach). In any case, kuddos to the team for being so open about their work and the evolution of their design.

8 Comments

Filed under Application Mgmt, Articles, Everything, Graph query, Mgmt integration, Microsoft, Modeling, RDF, Semantic tech

Interesting links

A few interesting links I noticed tonight.

HP Delivers Industry-first Management Capabilities for Microsoft System Center

That’s not going to improve the relationship between the Insight Control group (part of the server hardware group, of Compaq heritage) and the BTO group (part of HP Software, of HP heritage plus many acquisitions) in HP.  The Microsoft relationship was already a point of tension when they were still called SIM and OpenView, respectively.

CA Acquires Cassatt

Constructive destruction at work.

Setting up a load-balanced Oracle Weblogic cluster in Amazon EC2

It’s got to become easier, whether Oracle or somebody else does it. In the meantime, this is a good reference.

[UPDATED 2009/07/12: If you liked the “WebLogic on EC2” article, check out the follow-up: “Full Weblogic Load-Balancing in EC2 with Amazon ELB”.]

Full Weblogic Load-Balancing in EC2 with Amazon ELB

Comments Off on Interesting links

Filed under Amazon, Application Mgmt, Automation, CA, Cloud Computing, Everything, HP, IT Systems Mgmt, Manageability, Mgmt integration, Microsoft, Middleware, Oracle, Utility computing, Virtualization

/me thinks Google Wave looks like IRC

If you’re not yet seasick with all the reviews of Google Wave, here are a few additional thoughts.

My mental picture for a Wave is that of an IRC channel on which each message is an edit to an XML doc. And where the IRC server (or a bot, like Zakim) keeps a log of all messages. I think it’s the use of bots in Wave as in IRC that pushed me towards this view. The character-per-character update reminded me of the arguments about the comparative values of the Unix “talk” command and IRC. And if the IRC comparison holds water, hang on for the upcoming bot wars. BTW, doesn’t this Wave Federation Protocol look like an ideal opportunity to resurrect the IRC bot attack code that leveraged server splits?

Leaving IRC aside, the other obvious lens through which to look at Wave is the good old WS/REST debate. Let’s brace ourselves for the “is Wave RESTful” analysis that are sure to follow. I’ll note, tongue in cheek, that an alternative (to XMPP) way to implement a Wave could be provided by the WS specifications currently being worked on in the W3C Web Services Resource Access working group : send a succession of WS-RT “Put” messages to a WS-Eventing event sink that, in turn, acts as an event source. Or formalize the sink/source combination more cleanly as a broker from WS-BrokeredNotification. Finally a non-management use case for these specifications! Good luck doing character-by-character updates over this, but I am not sure that this is the most fundamental part of Wave anyway (though it makes for a good demo).

Nick Gall is right to separate the “technology showcase” aspect from the “killer app” aspect. The demo is very nice but it takes more than cool technology to change years of habits and social conventions, supported by hundreds of tools. So I am not sure how much of a killer app this collaboration demo is, however nice. On the other hand, I can see how the underlying framework (or at least the techniques used to create it) could quickly spread. I need more time looking at the federation protocol to decide what I think about it. This blog entry clearly describes the three Ps (product, platform, protocol) and some of the history.

As far as how this may relate to systems management, I don’t see too much alignment from a modeling perspective. What really matters in IT models are the relationships between the entities and Wave puts a lot more focus on the content of each wave than its relationships with others. At least for now. The underlying synchronization techniques on the other hand seem more readily applicable. The Rasmussen brothers previously created Google Maps which I found very inspiring from an IT management point of view. Years later the IT management industry still hasn’t caught up with them.

2 Comments

Filed under Everything, Google, JavaScript, Mashup

Cloud APIs need to be complemented by Cloud processes

A lot of attention has been focused on technical standards for Cloud computing, especially over the last month (e.g. DMTF incubator announcement). That’s fine, but before we go crazy with detailed technical standards let’s realize that for Cloud computing (of the public variety at least) to take off we’ll need just as much standardization of non-technical interactions. Namely processes.

This, to me, is one of the most interesting angles on the recent announcement by Amazon AWS that they now support (in limited beta) the ability to load data from storage that is physically shipped to them. Have a look at this announcement and you’ll notice that it spends more time describing a logistical process (how to pack, how to ship…) than technical interfaces (storage device requirements, how to create a manifest…). It is still part of the “AWS Developer Guide” but clearly these instructions are not just for developers.

Many more such processes need to be “standardized” (or at least documented) for companies to efficiently be able to use public Clouds (and to some extent even private Clouds). Let’s take SLAs as an example. It sounds good when a Cloud provider says “we offer SLAs”. But what does it mean? Does it mean “we advertise some SLA numbers, you’re responsible for contacting us (trough a phone number hidden somewhere on our site) when you think we’ve violated them; if we agree with your measurements then you may get a check in the mail at some point in the future”? Not so useful. If, on the other hand, there is a clear definition of the metric that the SLA applies to, a clear definition of how it gets measured (do we trust provider performance reports, customer measurement, a third party monitor…), a clear process to claim refund, a clear process to actually provide the refund (credit for future service or direct payment, when/how is the payment made…), then it becomes more useful.

I picked the SLA enforcement example because it happens to be an area that the TMF (TeleManagement Forum) has made partially available as a teaser for its eTOM business process framework (aimed at telco providers). The full list of eTOM processes is only available to paying subscribers. One of the goals of the eTOM process framework is “to simplify procurement, serving as a common language between service providers and suppliers”. Another way to say it is that eTOM “recognizes that the enterprise interacts with external parties, and that the enterprise may need to interact with process flows defined by external parties, as in ebusiness interactions”. Exactly what we are talking about when it comes to making public Clouds easily consumable by enterprises. SLA management is just one small part of the overall eTOM framework (if you look for it in this eTOM overview poster it’s in purple, under “assurance”, in the first row).

My point is not to assert that Cloud providers should adopt eTOM. Nobody adopts eTOM directly as a blueprint anyway. But, while the cultures and maturity levels are sometimes different, it is also hard to argue that Cloud providers have nothing to learn form telco providers (many of which are becoming Cloud providers themselves). I shudder at the idea of AT&T teaching another company how to handle customer service, but have you ever tried to call Google?

Readers of this blog are likely to be more familiar with ITIL than eTOM (who, incidentally, incorporates parts of ITIL in its latest version, 8.0). For those who don’t know about either, one way to think about it is that Cloud providers would implement processes that look somewhat like eTOM processes, that Cloud consumers implement IT management processes that follow to some extent ITIL best practices and that these two sets of processes need to meet for public Clouds to work. I touched on this a few months ago, when I commented on the incorporation of Cloud services in an IT service catalog.

My main point is not about ITIL or eTOM. It’s simply that there are important process aspects to delivering/consuming Cloud services and that they have so far been overshadowed by the technical aspects. The processes sketched in the AWS import/export capability represent the first drop of an upcoming shower.

[UPDATED 2009/5/22: More on telcos becoming Cloud providers from EMC’s Chuck Hollis, with a retort by James Governor. Just listing these as FYI but my main point in this post is not about telcos, it’s about the need to clarify processes, independently of whether the provider is Amazon or AT&T. It’s just that the telcos have been working on such process standardization for a long time. Hoff provides another example of where process standardization is needed in Cloud relationships: right to audit.]

2 Comments

Filed under Amazon, Application Mgmt, Business Process, Cloud Computing, Everything, IT Systems Mgmt, ITIL, Standards, Utility computing

IT automation: the seven roads to management middleware

You can call it a “Cloud operating system”, an “adaptive infrastructure framework” or simply “IT management middleware” (my vote) as you prefer. It’s the software that underpins the automation engine of your Cloud. You can’t have a Cloud without an automation engine, unless you live in a country where IT admins run really fast, never push the wrong button, never plug a cable in the wrong port, can interpret blinking lights at a rate of 9,600 bauds and are very cheap. The automation engine is what technically makes a Cloud. That engine is an application whose business is to know what needs to be done to maintain the IT environment you use in a state that is acceptable to you at any point in time (where you definition of “acceptable” can evolve). Like any application, you want to keep its business logic neatly isolated from the mundane tasks that it relies on. These mundane tasks include things like:

  • collecting events and delivered them to the right place
  • collecting metrics of the different IT elements
  • discovering available resources and accessing them (with or without agents)
  • performing coordinated actions on IT elements
  • maintaining an audit of management actions
  • securing the management interactions
  • managing long-running tasks and processes
  • etc

That’s what management middleware does. It doesn’t automate anything by itself, but it provides an environment in which it is feasible to implement automation. This middleware is useful even if you don’t automate anything, but it often doesn’t get called out in that scenario. On the other hand, automation means capturing more business logic in software which makes it imperative to clearly layer concerns, at which point the IT management middleware can be more clearly identified within the overall IT management infrastructure.

This is happening in many different ways. I can count seven roads to IT management middleware, seven ways in which it is emerging as an identifiable actor in data centers. Each road represents a different history and comes with different assumptions and mindsets. And yet, they go after the same base problem of enabling IT management automation. Here is a quick overview of these seven roads.

Road #1: “these scripts have to grow up”

This road starts from all the scripts common in IT operations and matures them. It’s based on the realization that they are crucial business assets, just like the applications that they support. And that they implement reusable patterns. Alex Honor described it well here. Puppet and Powershell are in this category.

Road #2: “it’s just another integration job”

We’ve been doing computer integration almost since the second piece of software was written. There are plenty of mechanisms available to do so. IT management is just another integration problem, so let’s present it in a way that allows us to use our favorite integration tools on it. That’s the driver behind the use of Web Services for management integration (e.g. WSDM/WS-Management): create interfaces to manageable resources so that existing middleware (mostly J2EE application servers, along with their WS stack) can be used to solve the “enterprise IT management” integration problems in a robust and reliable way. The same logic is behind the current wave of REST-based IT management efforts (see this presentation). REST is a good integration approach, so let’s turn IT resources into RESTful resources so we can apply this generic integration mechanism to enterprise IT management. Different tool, but same logical approach. Which is why they can be easily compared.

Road #3: “top-down”

This is the “high road”, the one most intellectually satisfying and most promising in the long term. But also the one with this highest hurdle off the gate. In this approach, you create a top-down model of your system and you try to mediate management actions through this model. But for this to be practical, you need to hit the sweetspot in many dimensions. You need composable sub-models at a level of granularity that makes them maintainable. You need to force enough uniformity but not so much as to loose all optimizations. You need to decide which of the myriads of configuration variables you include in your model. Because you can’t take the traditional approach of “I’ll model it and display it to my user who can decide what to do with it”. Because the user now is a piece of software and it can’t make a judgment of whether it is ok if parameter foo differs from the desires state or not. This has been worked on for a long time (remember HP’s UDC?) with steady but slow progress. Elastra has some of the most interesting technology there, and a healthy dose of realism and opportunism to make it work.

Think of it as SCA component/composites but not just for software artifacts. Rather, it’s SCA for all IT elements, with wires and policies that are just rich enough to allow meaningful optimization but not too rich to be unmanageable. If you can pull off such model-driven IT management middleware, then the automation code almost writes itself on top of it.

Road #4: “management integration is another feature of our management console”

That was the road followed by the Big Four. Buy enough of their products (CMDBs, network management console, operations console, service desk, etc…) and you’ll get APIs that allow you to leverage their discovery, collection, eventing and process management features. So you can write your automation on top. At least on paper. In reality, these APIs are too inconsistent and import/export-oriented to really support SOA-style (or REST-style) integration, even though they usually have a SOAP and/or plain HTTP option available. It’s a challenge just to get point to point integration between these products, even more a true set of management services that can be orchestrated. These vendors know it and rather than turning their product suites into a real SOI (Service Oriented Infrastructure) they have decided to build/buy automation engines on the side that can be hard-wired with the existing IT management products. That’s your IT management middleware but it comes bundled with the automation engine rather than as an independent layer.

Road #5: “management integration is another feature of our hypervisor”

If the virtual machine (in the x86 virtualization sense of the term, a.k.a. a fake machine) is the basic building block of your IT infrastructure then hypervisor interfaces to manipulate these VMs are pretty much all you need in terms of middleware to build data center automation on top, right? Are we done then? Not really, since there is a lot more to an application than the VMs on which it runs. Still, hypervisors bring the potential of automation to what used to be a hardware domain and as such play a big part in the composition of the IT management middleware of modern data centers.

Road #6: “make it all the same”

From what I understand about how Yahoo, Google (see section 2.1 “System Health Infrastructure”), Microsoft (see the “device manager” and “collection service” parts of Autopilot) and others run their Web applications, they have put a lot of work in that management middleware and have made simplicity a key design goal for it. To that end, they are  willing to accept drastic limitations at both ends of the IT infrastructure chain: at the bottom, they actively limit the heterogeneity of resources in the data center. At the top, they limit the capabilities exposed to the business applications. In an extreme scenario, all servers are the same and all the business applications are written to a few execution/persistence/communication environments (think GAE SDK as an example). Even if you only approximate this ideal, it’s a dramatic simplification that makes your IT management middleware much simpler and thinner.

Road #7: “it’s the Grid”

The Grid computing and HPC (High Performance Computing) communities have long been active in this area. There is a lot of relevant expertise in all the Grid work, but we also need to understand the difference between IT management middleware and the Grid infrastructure as defined by OGSI. OGSI defines a virtualization layer on which to build applications. It doesn’t define how to deploy, manage and configure the physical datacenter infrastructure that allows OGSI interfaces to be exposed to consumers. With regards to HPC, we also need to keep in mind that the profile of the applications is very different from your typical enterprise application (especially the user-driven apps as opposed to batch jobs). In HPC environments, CPUs can run at full capacity for days and new requests just go in a queue. The Web applications of your typical enterprise don’t have this luxury and usually need spare capacity.

All these approaches can complement each other and I am not trying to pin each product/vendor to just one approach. In this post (motivated by this podcast), Stu Charlton discusses the overlap and differences between some of these approaches. Rather than a taxonomy of products, this list of seven roads to IT management middleware is simply a cultural history, a reading guide to understand the background, vocabulary and assumptions of the different solutions. This list cuts across the declarative versus procedural debate (#1 is clearly procedural, #3 is clearly declarative, the others could go either way).

[UPDATED 2009/6/23: Stu has a somewhat related (similary structured but much more entertainingly writen) list of Cloud Computing approaches. I feel good that I have one more item in my list than him.]

3 Comments

Filed under Application Mgmt, Automation, Cloud Computing, Everything, Grid, IT Systems Mgmt, Mgmt integration, Middleware, Utility computing

Oracle buys Virtual Iron

The rumor had some legs. Oracle announced today that is has acquired Virtual Iron for its virtualization management technology. This publicly-available white paper is a great description of the technology and product capabilities.

Here is a short overview (from here).

VI-Center provides the following capabilities:

  • Physical infrastructure: Physical hardware discovery, bare metal provisioning, configuration, control, and monitoring
  • Virtual Infrastructure: Virtual environment creation and hierarchy, visual status dashboards, access controls
  • Virtual Servers: Create, Manage, Stop, Start, Migrate, LiveMigrate
  • Policy-based Automation: LiveCapacity™, LiveRecovery™, LiveMaintenance, Rules Engine, Statistics, Event Monitor, Custom policies
  • Reports: Resource utilization, System events

Interesting footnote: I read that SAP Ventures was an investor in Virtual Iron…

I also notice that the word “cloud” does not appear once in the list of all press releases issued by Virtual Iron over three years. For a virtualization start-up, that’s a pretty impressive level of restrain and hype resistance.

1 Comment

Filed under Everything, IT Systems Mgmt, Manageability, Mgmt integration, Oracle, Virtualization, Xen