Category Archives: Protocols

Can Cloud standards be saved?

Then: Web services standards

One of the most frustrating aspects of how Web services standards shot themselves in the foot via unchecked complexity is that plenty of people were pointing out the problem as it happened. Mark Baker (to whom I noticed Don Box also paid tribute recently) is the poster child. I remember Tom Jordahl tirelessly arguing for keeping it simple in the WSDL working group. Amberpoint’s Fred Carter did it in WSDM (in the post announcing the recent Amberpoint acquisition, I mentioned that “their engineers brought to the [WSDM] group a unique level of experience and practical-mindedness” but I could have added “… which we, the large companies, mostly ignored.”)

The commonality between all these voices is that they didn’t come from the large companies. Instead they came from the “specialists” (independent contractors and representatives from small, specialized companies). Many of the WS-* debates were fought along alliance lines. Depending on the season it could be “IBM vs. Microsoft”, “IBM+Microsoft vs. Oracle”, “IBM+HP vs. Microsoft+Intel”, etc… They’d battle over one another’s proposal but tacitly agreed to brush off proposals from the smaller players. At least if they contained anything radically different from the content of the submission by the large companies. And simplicity is radical.

Now: Cloud standards

I do not reminisce about the WS-* standards wars just for old time sake or the joy of self-flagellation. I also hope that the current (and very important) wave of standards, related to all things Cloud, can do better than the Web services wave did with regards to involving on-the-ground experts.

Even though I still work for a large company, I’d like to see this fixed for Cloud standards. Not because I am a good guy (though I hope I am), but because I now realize that in the long run this lack of perspective even hurts the large companies themselves. We (and that includes IBM and Microsoft, the ringleaders of the WS-* effort) would be better off now if we had paid more attention then.

Here are two reasons why the necessity to involve and include specialists is even more applicable to Cloud standards than Web services.

First, there are many more individuals (or small companies) today with a lot of practical Cloud experience than there were small players with practical Web services experience when the WS-* standardization started (Shlomo Swidler, Mitch Garnaat, Randy Bias, John M. Willis, Sam Johnston, David Kavanagh, Adrian Cole, Edward M. Goldberg, Eric Hammond, Thorsten von Eicken and Guy Rosen come to mind, though this is nowhere near an exhaustive list). Which means there is even more to gain by ensuring that the Cloud standard process is open to them, should they choose to engage in some form.

Second, there is a transparency problem much larger than with Web services standards. For all their flaws, W3C and OASIS, where most of the WS-* work took place, are relatively transparent. Their processes and IP policies are clear and, most importantly, their mailing list archives are open to the public. DMTF, where VMWare, Fujitsu and others have submitted Cloud specifications, is at the other hand of the transparency spectrum. A few examples of what I mean by that:

  • I can tell you that VMWare and Fujitsu submitted specifications to DMTF, because the two companies each issued a press release to announce it. I can’t tell you which others did (and you can’t read their submissions) because these companies didn’t think it worthy of a press release. And DMTF keeps the submission confidential. That’s why I blogged about the vCloud submission and the Fujitsu submission but couldn’t provide equivalent analysis for the others.
  • The mailing lists of DMTF working groups are confidential. Even a DMTF member cannot see the message archive of a group unless he/she is a member of that specific group. The general public cannot see anything at all. And unless I missed it on the site, they cannot even know what DMTF working groups exist. It makes you wonder whether Dick Cheney decided to call his social club of energy company executives a “Task Force” because he was inspired by the secrecy of the DMTF (“Distributed Management Task Force”). Even when the work is finished and the standard published, the DMTF won’t release the mailing list archive, even though these discussions can be a great reference for people who later use the specification.
  • Working documents are also confidential. Working groups can decide to publish some intermediate work, but this needs to be an explicit decision of the group, then approved by its parent group, and in practice it happens rarely (mileage varies depending on the groups).
  • Even when a document is published, the process to provide feedback from the outside seems designed to thwart any attempt. Or at least that’s what it does in practice. Having blogged a fair amount on technical details of two DMTF standards (CMDBf and WS-Management) I often get questions and comments about these specifications from readers. I encourage them to bring their comments to the group and point them to the official feedback page. Not once have I, as a working group participant, seen the comments come out on the other end of the process.

So let’s recap. People outside of DMTF don’t know what work is going on (even if they happen to know that a working group called “Cloud this” or “Cloud that” has been started, the charter documents and therefore the precise scope and list of deliverables are also confidential). Even if they knew, they couldn’t get to see the work. And even if they did, there is no convenient way for them to provide feedback (which would probably arrive too late anyway). And joining the organization would be quite a selfless act because they then have to pay for the privilege of sharing their expertise while not being included in the real deciding circles anyway (unless there are ready to pony up for the top membership levels). That’s because of the unclear and unstable processes as well as the inordinate influence of board members and officers who all are also company representatives (in W3C, the strong staff balances the influence of the sponsors, in OASIS the bylaws limit arbitrariness by the board members).

What we are missing out on

Many in the standards community have heard me rant on this topic before. What pushed me over the edge and motivated me to write this entry was stumbling on a crystal clear illustration of what we are missing out on. I submit to you this post by Adrian Cole and the follow-up (twice)by Thorsten von Eicken. After spending two days at a face to face meeting of the DMTF Cloud incubator (in an undisclosed location) this week, I’ll just say that these posts illustrate a level of practically and a grounding in real-life Cloud usage that was not evident in all the discussions of the incubator. You don’t see Adrian and Thorsten arguing about the meaning of the word “infrastructure”, do you? I’d love to point you to the DMTF meeting minutes so you can judge for yourself, but by now you should understand why I can’t.

So instead of helping in the forum where big vendors submit their specifications, the specialists (some of them at least) go work in OGF, and produce OCCI (here is the mailing list archive). When Thorsten von Eicken blogs about his experience using Cloud APIs, they welcome the feedback and engage him to look at their work. The OCCI work is nice, but my concern is that we are now going to end up with at least two sets of standard specifications (in addition to the multitude of company-controlled specifications, like the ubiquitous EC2 API). One from the big companies and one from the specialists. And if you think that the simplest, clearest and most practical one will automatically win, well I envy your optimism. Up to a point. I don’t know if one specification will crush the other, if we’ll have a “reconciliation” process, if one is going to be used in “private Clouds” and the other in “public Clouds” or if the conflict will just make both mostly irrelevant. What I do know is that this is not what I want to see happen. Rather, the big vendors (whose imprimatur is needed) and the specialists (whose experience is indispensable) should work together to make the standard technically practical and widely adopted. I don’t care where it happens. I don’t know whether now is the right time or too early. I just know that when the time comes it needs to be done right. And I don’t like the way it’s shaping up at the moment. Well-meaning but toothless efforts like don’t make me feel better.

I know this blog post will be read both by my friends in DMTF and by my friends in Clouderati. I just want them to meet. That could be quite a party.

IBM was on to something when it produced this standards participation policy (which I commented on in a cynical-yet-supportive way – and yes I realize the same cynicism can apply to me). But I haven’t heard of any practical effect of this policy change. Has anyone seen any? Isn’t the Cloud standard wave the right time to translate it into action?

Transparency first

I realize that it takes more than transparency to convince specialists to take a look at what a working group is doing and share their thoughts. Even in a fully transparent situation, specialists will eventually give up if they are stonewalled by process lawyers or just ignored and marginalized (many working group participants have little bandwidth and typically take their cues from the big vendors even in the absence of explicit corporate alignment). And this is hard to fix. Processes serve a purpose. While they can be used against the smaller players, they also in many cases protect them. Plus, for every enlightened specialist who gets discouraged, there is a nutcase who gets neutralized by the need to put up a clear proposal and follow a process. I don’t see a good way to prevent large vendors from using the process to pressure smaller ones if that’s what they intend to do. Let’s at least prevent this from happening unintentionally. Maybe some of my colleagues  from large companies will also ask themselves whether it wouldn’t be to their own benefit to actually help qualified specialists to contribute. Some “positive discrimination” might be in order, to lighten the process burden in some way for those with practical expertise, limited resources, and the willingness to offer some could-otherwise-be-billable hours.

In any case, improving transparency is the simplest, fastest and most obvious step that needs to be taken. Not doing it because it won’t solve everything is like not doing CPR on someone on the pretext that it would only restart his heart but not cure his rheumatism.

What’s at risk if we fail to leverage the huge amount of practical Cloud expertise from smaller players in the standards work? Nothing less than an unpractical set of specifications that will fail to realize the promises of Cloud interoperability. And quite possibly even delay them. We’ve seen it before, haven’t we?

Notice how I haven’t mentioned customers? It’s a typical “feel-good” line in every lament about standards to say that “we need more customer involvement”. It’s true, but the lament is old and hasn’t, in my experience, solved anything. And today’s economical climate makes me even more dubious that direct customer involvement is going to keep us on track for this standardization wave (though I’d love to be proven wrong). Opening the door to on-the-ground-working-with-customers experts with a very neutral and pragmatic perspective has a better chance of success in my mind.

As a point of clarification, I am not asking large companies to pick a few small companies out of their partner ecosystem and give them a 10% discount on their alliance membership fee in exchange for showing up in the standards groups and supporting their friendly sponsor. This is a common trick, used to pack a committee, get the votes and create an impression of overwhelming industry support. Nobody should pick who the specialists are. We should do all we can to encourage them to come. It will be pretty clear who they are when they start to ask pointed questions about the work.

Finally, from the archives, a more humorous look at how various standards bodies compare. And the proof that my complaints about DMTF secrecy aren’t new.


Filed under Cloud Computing, CMDBf, DMTF, Everything, HP, IBM, Mgmt integration, Microsoft, Oracle, People, Protocols, Specs, Standards, Utility computing, VMware, W3C, Web services, WS-Management

REST in practice for IT and Cloud management (part 3: wrap-up)

[Preface: a few months ago I shared some thoughts about how REST was (or could) be applied to IT and Cloud management. Part 1 was a comparison of the RESTful aspects of four well-known IaaS Cloud APIs and part 2 was an analysis of how REST applies to configuration management. Both of these entries received well-informed reader comments BTW, so if you read the posts but didn’t come back for the comments you really owe it to yourself to do so now. At the time, I jotted down thoughts for subsequent entries in this series, but I never got around to posting them. Since the topic seems to be getting a lot of attention these days (especially in DMTF) I decided to go back to these notes and see if I could extract a few practical recommendations in the form of a wrap-up.]

The findings listed below should be relevant whether your protocol is trying to be truly RESTful, just HTTP-centric or even zen-SOAPy. Many of the issues that arise when creating a protocol that maps well to IT management use cases should transcend these variations and that’s what I try to cover.

Finding #1: Relationships (links) are first-class entities (a.k.a. “hypermedia”)

The clear conclusion of both part 1 and part 2 was that the most relevant part of REST for IT and Cloud management is the use of hypermedia. IT management enjoys a head start on this compared to other domains, because its models are already rich in explicit relationships (e.g. CIM associations), as opposed to other business domains in which relationships are more implicit (to the end user at least). But REST teaches us that just having relationships in your model is not enough. They need to be exposed in a way that maps directly to the protocol, so that following a relationship is an infrastructure-level task, not an application-level task: passing an ID as a parameter for some domain-specific function is not it.

This doesn’t violate the rule to not mix the protocol and the model because the alignment should take place in the metamodel. XML is famously weak in that respect, but that’s where Atom steps in, handling relationships in a generic way. Similarly, support for references is, in addition to its accolade to Schematron, one of the main benefits of SML (extra kudos for apparently dropping the “EPR” reference scheme between submission and standardization, in favor of just the “URI” scheme). Not to mention RDFa and friends. Or HTTP Link headers (explained) for link-challenged types.

Finding #2: Put IDs on steroids

There is little to argue about the value of clearly identifying things of interest and we didn’t wait for the Web to realize this. But it is also one of the most vexing and complex problems in many areas of computing (including IT management). Some of the long-standing questions include:

  • Use an opaque ID (some random-looking string a characters) or an ID grounded in “unique” properties of the resource (if you can find any)?
  • At what point does a thing stop being the same (typical example: if I replace each hardware component of a server one after the other, at which point is it not the same server anymore? Does it make sense for the IT guys to slap an “asset id” sticker on the plastic box around it?)
  • How do you deal with reconciling two resources (with their own IDs) when you realize they represent the same thing?

REST guidelines don’t help with these questions. There often is an assumption, which is true for many web apps, that the application “owns” the resource. My “inbox” only exists as a resource within the mail server application (e.g. Gmail or an Exchange server). Whatever URI GMail assigns for it is the URI for my inbox, period. Things are not as simple when the resources exist outside of any specific application: take a server, for example: the board management controller (or the hypervisor in the case of a VM), the OS management layer and the management agent installed on the machine all have claims to report on the machine (and therefore a need to identify it).

To some extent, Cloud computing simplifies many of these issues by providing controllers that “own” infrastructure resources and can authoritatively identify them. But it really is only pushing the problem to the next level of the stack.

Making the ID a URI doesn’t magically answer these questions. Though it helps in that it lets you leverage reconciliation mechanisms developed around URIs (such as <atom:link rel=”alternate”> or owl:sameAs). What REST does is add another constraint to this ID mechanism: Make the IDs dereferenceable URLs rather than just URIs.

I buy into this. A simple GET on a resource URI doesn’t solve everything but it has so many advantages that it should be attempted in all cases. And make this HTTP GET please (see finding #6).

In this adoption of GET, we just have to deal with small details such as:

  • What URL do I use for resources that have more than one agent/controller?
  • How close to the resource do I point this URL? If it’s too close to it then it may change as the resource evolves (e.g. network changes) or be affected by the resource performance (e.g. a crashed machine or application that does not respond to its management API). If it’s removed from the resource, then I introduce a scope (e.g. one controller) within which the resource has to remain, which may cause scalability concerns (how many VMs can/should one controller handle, what if I want to migrate a VM across the ocean…).

These are somewhat corner cases (and the more automation and virtualization you get, the fewer possible controllers you have per resource). While they need to be addressed, they don’t come close to negating the value of dereferenceable IDs. In addition, there are plenty of mechanisms to help with the issues above, from links in the representations (obviously) to RDDL-style lightweight directory to a last resort “give Saint Peter a call” mechanism (the original WSRF proposal had a sub-specification called WS-RenewableReferences that would let you ask for a new version of an expired EPR but it was never published — WS-Naming in then-GGF also touched on that with its reference resolvers — showing once again that the base challenges don’t change as fast as technology flavors).

Implicit in this is the fact that URIs are vastly superior to EPRs. The latter were only just a band-aid on a broken system (which may have started back when WSDL 1.1 decided to define “ports” as message aggregators that can have only one URL) and it’s been more debilitating to SOAP than any other interoperability issue. Web services containers internalized this assumption to the point of providing a stunted dispatch mechanism that made it very hard to assign distinct URLs to resources.

Finding #3: If REST told you to jump off a bridge, would you do it?

Adherence to REST is not required to get the benefits I describe in this series. There is a lot to be inspired by in REST, but it shouldn’t be a religion. Sure, if you squint hard enough (and poke it here and there) you can call your interface RESTful, but why bother with the contortions if some parts are not so. As long as they don’t detract from the value of REST in the other parts. As in all conversions, the most fervent adepts of RPC will likely be tempted to become its most violent denunciators once they’re born again. This is a tired scenario that we don’t need to repeat. Don’t think of it as a conversion but as a new perspective.

Look at the “RESTful with many parameters?” comment thread on Stefan Tilkov’s excellent InfoQ introduction to REST. It starts with some shared distaste for parameter-laden URIs and a search for a more RESTful approach. This gets suggested:

You could do a post on some URI like ./query/product_dep which would create a query resource. Now you “add” products to the query either by sending a product uri list with the initial post or by calling post on ./query/product_dep/{id}. With every post to the query resource the get on the query resource would change.

Yeah, you could. But how about an RPC-like query operation rather than having yet another resource lifecycle to manage just for the sake of being REST-compliant? And BTW, how do you think any sane consumer of your API is going to handle this? You guessed it, by packaging the POST/POST/GET/DELETE in one convenient client-side library function called “query”. As much as I criticize RPC-centric toolkits (see finding #5 below), it would be justified in this case.

Either you understand why/how REST principles benefit you or you don’t. If you do, then use this understanding to interpret the REST principles to best fit your needs. If you don’t, then no amount of CONTENT-TYPE-pixie-dust-spreading, GET-PUT-POST-DELETE-golden-rule-following and HATEOAS-magical-incantation-reciting will help you. That’s the whole point, for me at least, of this tree-part investigation. Stefan says essential the same, but in a converse way, in his article: “there are often reasons why one would violate a REST constraint, simply because every constraint induces some trade-off that might not be acceptable in a particular situation. But often, REST constraints are violated due to a simple lack of understanding of their benefits.” He says “understand why you violate” and I say “understand why you obey”. It is essentially the same (if you’re into stereotypes you can attribute the difference to his Germanic heritage and my Gallic blood).

Even worse than bending your interface to appear RESTful, don’t cherry-pick your use cases to only keep those that you feel you can properly address via REST, leaving the others aside. Conversely, don’t add requirements just because REST makes them easy to support (interesting how quickly “why do you force me to manage the lifecycle of yet another resource just to run a query” turns into “isn’t this great, you can share queries among users and you can handle long-running queries, I am sure we need this”).

This is not to say that you should not create a fully RESTful system. Just that you don’t necessarily have to and you can still get many benefits as long as you open your eyes to the cost/benefits trade-off involved.

Finding #4: Learn humility from REST

Beyond the technology, there is a vibe behind REST design. You can copy the technology and still miss it. I described it in 2005 as Humble Architecture, and applied to SOA at the time. But it describes REST just as well:

More practically, this means that the key things to keep in mind when creating a service, is that you are not at the center of the universe, that you don’t know who is going to consume your service, that you don’t know what they are going to do with it, that you are not necessarily the one who can make the best use of the information you have access to and that you should be willing to share it with others openly…

The SOA Manifesto recently called this “intrinsic interoperability”.

In IT management terms, it means that you can RESTify your CMDB and your event console and your asset management software and your automation engine all you want, if you see your code as the ultimate consumer and the one that knows best, as the UI that users have to go through, the “ultimate source of truth” and the “manager of managers” then it doesn’t matter how well you use HTTP.

Finding #5: Beware of tools bearing gifts

To a large extent, the great thing about REST is how few tools there are to take it away from you. So you’re pretty much forced to understand what is going on in your contract as opposed to being kept ignorant by a wsdl2java type of toolkit. Sure, Java (and .NET) have improved in that regard, but really the cultural damage is done and the expectations have been set. Contrast this to “the ‘router’ is just a big case statement over URI-matching regexps”, from Tim Bray’s post on the Sun Cloud API, one of my main inspirations for this investigation.

REST is not inherently immune to the tool-controlling-the-hand syndrome. It’s just a matter of time until such tools try to make REST “accessible” to the “normal” developer (who can supposedly prevent thread deadlocks but not parse XML). Joe Gregorio warns about this in the context of WADL (to summarize: WADL brings XSD which leads to code generation). Keep this in mind next time someone states that REST is more “loosely coupled” than SOAP. It’s how you use it that matters.

Finding #6: Use screws, not glue, so we can peer inside and then close the lid again

The “view source” option is how I and many others learned HTML. It unfortunately created a generation of HTML monsters who never went past version 3.2 (the marbled background makes me feel young again). But it also fueled the explosion of the Web. On-the-wire inspection through soapUI is what allowed me to perform this investigation and report on it (WMI has allowed this for years, but WS-Management is what made it accessible and usable for anyone on any platform). This was, of course, in the context of SOAP which is also inspectable. Still, in that respect nothing beats plain HTTP which is why I recommend HTTP GET in finding #2 (make IDs dereferenceable) even though I don’t expect that the one-page-per-resource view is going to be the only way to access it in the finished product.

These (HTML source, on-the-wire XML and resource-description pages) rarely hit the human eye and yet their presence enables the development of the more commonly used views. Making it as easy as possible to see what is going on under the covers helps with learning, with debugging, with extending and with innovating. In the same way that 99% of web users don’t look at the HTML source (and 99.99% of them don’t see the HTTP requests) but the Web would not be what it is to them if this inspectability wasn’t been there to fuel its development.

Along the same line, make as few assumptions as possible about the consumers in your interfaces. Which, in practice, often means document what goes on the wire. WSDL/WADL can be used as a format, but they are at most one small component. Human-readable semantics are much more important.

Finding #7: Nothing is free

Part of what was so attractive about SOAP is everything you were going to get “for free” by using it. Message-level security (for all these use cases where your messages starts over HTTP, then hops onto a train, then get delivered by a carrier pigeon). Reliable messaging. Transactionality. Intermediaries (they were going to be a big deal in SOAP, as you can see in vestigial form today in the Nodes/Roles left in the spec – also, do you remember WS-Routing? I do.)

And it’s true that by now there is a body of specifications that support this as composable SOAP headers. But the lack of usage of these features contrasts with how often they were bandied in the early days of SOAP.

Well, I am detecting some of the same in the REST camp. How often have you heard about how REST enables caching? Or about how content types allows an ISP to compress images on the fly to speed up delivery over dial-up? Like in the SOAP case, these are real features and sometimes useful. It doesn’t mean that they are valuable to you. And if they are not, then don’t let them be used as justifications. Especially since they are not free. If caching doesn’t help me (because of low volume, because security considerations prevent a shared cache, etc) then its presence actually adds a cost to me, since I now have to worry whether something is cached or not and deal with ETags. Or I have to consistently remember to request the cache to be bypassed.

Finding #8: Starting by sweeping you front door.

Before you agonize about how RESTful your back-end management protocol is, how about you make sure that your management application (the user front-end) is a decent Web application? One with cool URIs , where the back button works, where bookmarks work, where the data is not hidden in some over-encompassing Flash/Silverlight thingy. Just saying.


Now for some questions still unanswered.

Question #1: Is this a flee market?

I am highly dubious of content negotiation and yet I can see many advantages to it. Mostly along the lines of finding #6: make it easy for people to look under the hood and get hold of the data. If you let them specify how they want to see the data, it’s obviously easier.

But there is no free lunch. Even if your infrastructure takes care of generating these different views for you (“no coding, just check the box”), you are expanding the surface of your contract. This means more documentation, more testing, more interoperability problems and more friction when time comes to modify the interface.

I don’t have enough experience with format negotiation to define the sweetspot of this practice. Is it one XML representation and one HTML, period (everything else get produced by the client by transforming the XML)? But is the XML Atom-wrapped or not? What about RDF? What about JSON? Not to forget that SOAP wrapper, how hard can it be to add. But soon enough we are in legacy hell.

Question #2: Mime-types?

The second part of Joe Gregorio’s WADL entry is all about Mime types and I have a harder time following him there. For one thing, I am a bit puzzled by the different directions in which Mime types go at the same time. For example, we have image formats (e.g. “image/png”), packaging/compression formats (e.g. “application/zip”) and application formats (e.g. “application/vnd.oasis.opendocument.text” or “application/msword”). But what if I have a zip full of PNG images? And aren’t modern word processing formats basically a zip of XML files? If I don’t have the appropriate viewer, maybe I’d like them to be at least recognized as ZIP files. I don’t see support for such composition and taxonomy in these types.

And even within one type, things seem a bit messy in practice. Looking at the registered applications in the “options” menu of my Firefox browser, I see plenty of duplication:

  • application/zip vs. application/x-zip-compressed
  • application/ms-powerpoint vs. application/
  • application/sdp vs. application/x-sdp
  • audio/mpeg vs. audio/x-mpeg
  • video/x-ms-asf vs. video/x-ms-asf-plugin

I also wonder at what level of depth I want to take my Mime types. Sure I can use Atom as a package but if the items I am passing around happen to be CIM classes (serialized to XML), doesn’t it make sense to advertise this? And within these classes, can I let you know which domain (e.g. which namespace) my resources are in (virtual machines versus support tickets)?

These questions may simply be a reflection of my lack of maturity in the fine art of using Mime types as part of protocol design. My experience with them is more of the “find the type that works through trial and error and then leave it alone” kind.

[Side note: the first time I had to pay attention to Mime types was back in 1995/1996, playing with non-parsed headers and the multipart/x-mixed-replace type to bring some dynamism to web pages (that was before JavaScript or even animated GIFs). The site is still up, but the admins have messed up the Apache config so that the CGIs aren’t executed anymore but return the Python code. So, here are some early Python experiments from yours truly: this script was a “pushed” countdown and this one was a “pushed” image animation. Cool stuff at the time, though not in a “get a date” kind of way.]

On the other hand, I very much agree with Joe’s point that “less is more”, i.e. that by not dictating how the semantics of a Mime type are defined the system forces you to think about the proper way to define them (e.g. an English-language RFC). As opposed to WSDL/XSD which gives the impression that once your XML validator turns green you’re done describing your interface. These syntactic validations are a complement at best, and usually not a very useful one (see “fat-bottomed specs”).

In comments on previous posts, Stu Charlton also emphasizes the value that Mime types bring. “Hypermedia advocates exposing a variety of links for such state-transitions, along with potentially unique media types to describe interfaces to those transitions.” I get the hypermedia concept, the HATEOAS approach and its very practical benefits. But I am still dubious about the role of Mime types in achieving them and I am not the only one with such qualms. I have too much respect for Joe and Stu to dismiss it entirely, but until I get an example that makes it “click” in practice for me I won’t sweat about Mime types too much.

Question #3: Riding the Zeitgeist?

That’s a practical question rather than a technical one, but as a protocol creator/promoter you are going to have to decide whether you market it as “RESTful”. If I have learned one thing in my past involvement with standards it is that marketing/positioning/impressions matter for standards as much as for products. To a large extent, for Clouds, Linked Data is a more appropriate label. But that provides little marketing/credibility humph with CIOs compared to REST (and less buzzword-compliance for the tech press). So maybe you want to write your spec based on Linked Data and then market it with a REST ribbon (the two are very compatible anyway). Just keep in mind that REST is the obvious choice for protocols in 2009 in the same way that SOAP was a few years ago.

Of course this is not an issue if you specification is truly RESTful. But none of the current Cloud “RESTful” APIs is, and I don’t expect this to change. At least if you go by Roy Fielding’s definition (or Paul’s handy summary):

A REST API must not define fixed resource names or hierarchies (an obvious coupling of client and server). Servers must have the freedom to control their own namespace. Instead, allow servers to instruct clients on how to construct appropriate URIs, such as is done in HTML forms and URI templates, by defining those instructions within media types and link relations. [Failure here implies that clients are assuming a resource structure due to out-of band information, such as a domain-specific standard, which is the data-oriented equivalent to RPC’s functional coupling].

And (in a comment) Mark Baker adds:

I’ve reviewed lots of “REST APIs”, many of them privately for clients, and a common theme I’ve noticed is that most folks coming from a CORBA/DCE/DCOM/WS-* background, despite all the REST knowledge I’ve implanted into their heads, still cannot get away from the need to “specify the interface”. Sometimes this manifests itself through predefined relationships between resources, specifying URI structure, or listing the possible response codes received from different resources in response to the standard 4 methods (usually a combination of all those). I expect it’s just habit. But a second round of harping on the uniform interface – that every service has the same interface and so any service-specific interface specification only serves to increase coupling – sets them straight.

So the question of whether you want to market yourself as RESTful (rather than just as “inspired by the proper use of HTTP illustrated by REST”) is relevant, if only because you may find the father of REST throwing (POSTing?) tomatoes at you. There is always a risk in wearing clothes that look good but don’t quite fit you. The worst time for your pants to fall off is when you suddenly have to start running.

For more on this, refer to Ted Neward’s excellent Roy decoder ring where he not only explains what Roy means but more importantly clarifies that “if you’re not doing REST, it doesn’t mean that your API sucks” (to which I’d add that it is actually more likely to suck if you try to ape REST than if you allow yourself to be loosely inspired by it).


Wrapping up the wrap-up

There is one key topic that I had originally included in this wrap-up but decided to remove: extensibility. Mark Hapner brings it up in a comment on a previous post:

It is interesting to note that HTML does not provide namespaces but this hasn’t limited its capabilities. The reason is that links are a very effective mechanism for composing resources. Rather than composition via complicated ‘embedding’ mechanisms such as namespaces, the web composes resources via links. If HTML hadn’t provided open-ended, embeddable links there would be no web.

I am the kind of guy who would have namespace-qualified his children when naming them (had my wife not stepped in) so I don’t necessarily see “extension via links” as a negation of the need for namespaces (best example: RDF). The whole topic of embedding versus linking is a great one but this post doesn’t need another thousand words and the “REST in practice” umbrella is not necessarily the best one for this discussion. So I hereby conclude my “REST in practice for IT and Cloud management” series, with the intent to eventually start a “Linked Data in practice for IT and Cloud management” series in which extensibility will be properly handled. And we can also talk about querying (conspicuously absent from Cloud APIs, unless CMDBf is now a Cloud API) and versioning. As a teaser for the application of Linked Data to IT/Cloud, I will leave you with what Vint Cerf has to say.

[UPDATED 2010/1/27: I still haven’t written the promised “Linked Data in practice for IT and Cloud management” post, but this explanation of the usage of Linked Data for pretty much says it all. I may still write a post describing how what Jeni says about government data applies to Cloud management APIs, but it’s almost too obvious to bother. Actually, there may be reasons why Cloud management benefits even more from Linked Data than UK government data, so it may still be worth a post. At some point. When I convince myself that it may influence things rather than be background noise.]


Filed under API, Application Mgmt, Automation, Cloud Computing, Everything, IT Systems Mgmt, Manageability, Mgmt integration, Modeling, Protocols, REST, Semantic tech, SOA, SOAP, Specs, Utility computing

Expanding on “twitter with a brain”

Chuck Shotton recently made a compelling case (“Twitter with a Brain“) for Twitter tools to allow the user to change the protocol endpoint. That is, instead of always going to, you can tell your Twitter client to send all requests to Why would you do this? You should read his blog entry, but in short his point is that the intermediary can add all kinds of new features that neither the Twitter client nor Twitter itself support. As always in computer science, a new level of decoupling adds opportunities for extensions (and breakage too, of course).

I fully agree with what he writes and I would very much like to see his call to action answered. In fact, I want more than what he is asking for. So here is my call to action:

1) It’s not just Twitter

Why just Twitter? This should be true for any client using any protocol. Why not also the APIs for the various Google and Yahoo services? The APIs for the other social networks beyond Twitter? For shopping sites like Amazon and EBay? Etc. And of course to all the various Cloud providers out there. Just because I am using the Amazon EC2 API it doesn’t mean I necessarily want the requests to go straight to Amazon. Client tools should always make the endpoint configurable, period.

2) It’s not just the clients, it’s also (and especially) the third party sites

Chuck’s examples are about features that the Twitter clients could provide but don’t, so an intermediary would be an easy way to hack support for them (others presumably include modifying the client – if open source -, writing a plug-in for it – it there is such mechanism -, or running a network interceptor on the local client – unless the protocol is encrypted-).

That’s nice and I’d love to see this, but the big deal for me is less with clients and more with third party sites. You know, all these sites that ask for your Twitter login/password. Or those that ask for your GMail/Yahoo account info to retrieve a list of your contacts. I never grant these requests, but I would consider it if they allowed me to tell them what endpoint URL to use. For example, rather than using my Twitter login to go straight to, they would use a login/password that I create and talk to The requests would be in the exact same shape as what they send today to Twitter, just directed to another URL. There, I could have a proxy that only allows some requests (e.g. “update twitter background image” but not “send update”) and forwards them using my real Twitter credentials. Or, for email accounts, I could have a proxy that allows requests that read my address book but not those that read my mails. The goal here is not to add features, it is to delegate trust in a fine-grained (and audited) manner. This, to me, is the burning need, rather than a 3rd place to implement Twitter lists.

I would probably write these proxies using a PaaS platform like the Google App Engine. Or maybe even Yahoo Pipes. I have long struggled to think of use cases for which Yahoo Pipes hits the sweetspot, and this may well be it. Especially if people write modules to handle specific APIs (e.g. a “Twitter API” module that shows all operations and lets you enable/disable them one by one in a pipe). The one thing missing would be a way for a pipe to keep a log of its invocations, for auditing.

You want access to my email and social network accounts? Give me the ability to filter you requests and you’ll get access. If it’s blind trust you want, I am afraid I have a very limited supply.

[Note: I wanted to add this as a comment on Chuck’s blog, but he doesn’t seem to allow them: “go start your own blog and/or shut up and eat your vegetables” is his recommendation. Since I already have my own blog, I guess I don’t have to eat my vegetables if I don’t want to. I just hope my kids don’t learn about this rule or they’ll be blogging in no time.]

[UPDATED 2009/11/30: WRT to Chuck’s request, it looks like it’s being done already. But no luck with the third party sites so far, which is what I most want to see.]


Filed under Automation, Everything, Google App Engine, Implementation, Mashup, PaaS, Portability, Protocols, Security, Social networks, Twitter, Yahoo

Missing out on the OCCI fun

As a recovering “design by committee” offender I have to be careful when lurking near standards groups mailing list, for fear my instincts may take over and I might join the fray. But tonight a few tweets containing alluring words like “header” and “metadata” got the better of me and sent me plowing through a long and heated discussion thread in the OGF OCCI mailing list archive.

I found the discussion fascinating, both from a technical perspective and a theatrical perspective.

Technically, the discussion is about whether to use HTTP headers to carry “metadata” (by which I think they  mean everything that’s not part of the business payload, e.g. an OVF document or other domain-specific payload). I don’t have enough context on the specific proposal to care to express my opinion on its merits, but what I find very interesting is that this shines another light on the age-old issue of how to carry non-payload info when designing a protocol. Whatever you call these data fields, you have to specify (by decreasing order of architectural importance):

  • How you deal with unknown fields: mustUnderstand or mustIgnore semantics.
  • How you keep them apart (prevent two people defining fields by the same name, telling different versions apart).
  • How you parse their content (and are they all parsed in the same manner or is it specific to each field).
  • Where they go.

SOAP provides one set of answers.

  • You can tag each one with a mustUnderstand attribute to force any consumer who doesn’t understand them to fault.
  • They are namespace-qualified.
  • They are XML-formatted.
  • They go at the top of the XML doc, in a section called the SOAP header.

You may agree or not with the approach SOAP took, but it’s important to realize that at its core SOAP is just this: the answer (in the form of the SOAP processing model) to these simple questions (here is more about the SOAP processing model and the abuses it has suffered if you’re interested). WSDL is something else. The WS-* stack is also something else. It’s probably too late to rescue SOAP from these associations, but I wanted to point this out for the record.

Whatever you answer to the four “non-payload data fields” questions above, there are many practical concerns that you have to consider when validating your proposal. They may not all be relevant to your use case, but then explicitly decide that they are not. They are things like:

  • Performance
  • Ability to process in a stream-based system
  • Ease of development (tool support, runtime accessibility…)
  • Ease of debugging
  • Field length limitations
  • Security
  • Ability to structure the data in the fields
  • Ability to use different transports (way overplayed in SOAP, but not totally irrelevant either)
  • Ability to survive intermediaries / proxies

Now leaving the technology aside, this OCCI email thread is also interesting from a human and organizational perspective. Another take on the good old Commedia dell standarte. Again, I don’t have enough context in the history of this specific group to have an opinion about the dynamics. I’ll just say that things are a bit more “free-flowing” than when people like my friend Dave Snelling were in charge in OGF. In any case, it’s great that the debate is taking place in public. If it had been a closed discussion they probably would not have benefited from Tim Bray dropping in to share his experience. On the plus side, they would have avoided my pontifications…


Filed under Cloud Computing, Everything, People, Protocols, SOAP, SOAP header, Specs, Standards, Utility computing

The future (2006 version), has arrived

Remember 2006? Things were starting to fall into place for IT management integration and automation:

  • SDD was already on its way to cleanly describe/package/manage the lifecycle of simple and composite applications alike,
  • the first version of SML came out to capture all the relevant constraints of complex and composite systems and open the door to “desired-state management”,
  • the CMDBf effort was started to seamlessly integrate all sources of configuration and provide a bird-eye view of your entire IT infrastructure, and
  • the WSDM/WS-Management convergence/reconciliation was announced and promised to free management consoles from supporting many resource discovery, collection and control mechanisms and from having platform/library dependencies between the manager and its targets.

It looked like we were a year or two from standardization on all these and another year or two from shipping implementations. Things were looking good.

Good news: the schedule was respected. SDD, SML and CMDBf are now all standards (at OASIS, W3C and DMTF respectively). And today the Eclipse COSMOS project announced the release of COSMOS 1.1 which implements them all. The WSDM/WS-Management convergence is the only one that didn’t quite go according to the plan but it is about to come out as a standard too (in a pared-down form).

Bad news: nobody cares. We’ve moved on to “private clouds”.

Having been involved with these specifications in various degrees (a little bit on SDD, a fair amount on SML and a lot on CMDBf and WSDM/WS-Management) I am not as detached as my sarcastic tone may suggest. But as they say in action movies, “don’t let sentiments get in the way of the mission”.

There is still a chance to reuse parts of this stack (e.g. the CMDBf query language) and there are lessons to learn from our errors. The over-promising, the technical misjudgments, the political bickering, the lack of concrete customer validation, etc. To some extent this work was also victim of collateral damages from the excesses of WS-* (I am looking at you WS-Addressing). We also failed to notice the rise of the hypervisor in our peripheral vision.

I tried to capture some important lessons in this post-mortem. For the edification of the cloud generation. I also see a pendulum in action. Where we over-engineered I now see some under-engineering (overly granular interaction models, overemphasis on the virtual machine as the unit of everything, simplistic constraint models, underestimation of config/patching issues…). Things will come around and may eventually look familiar (suggested exercise: compare PubSubHubBub with WS-Notification).

As long as each iteration gets us closer to the goal things are good.

See you in 2012. Same place, same day, same time.


Filed under Application Mgmt, Automation, Cloud Computing, CMDB, CMDB Federation, CMDBf, Desired State, Everything, IT Systems Mgmt, Manageability, Mgmt integration, Modeling, Protocols, SML, Specs, Standards, Utility computing, WS-Management

REST-*: good specs, bad branding?

In an earlier post, I argued for standardization of some basic REST-inspired mechanisms for the narrow goal of supporting control interfaces for different forms of Cloud Computing. As I was doing so, I noticed the first report of something called REST-*, introduced by RedHat’s Mark Little and I ended my post by wondering whether we were talking about the same thing or not.

Now that more information has emerged it seems pretty clear that we are not.

Mark Little understands transactions very well. No argument. He is not happy with some aspects of how they are supported over SOAP. Fine. He thinks it can be done better (at least for 80% of the cases and with lower barriers to entry) directly on top of HTTP (no envelope). Fine. He would like this to be standardized so that middleware stacks can interoperate. Fine. Same applies for pub/sub and p2p messaging, the other initial project out of the REST-* effort. All good.

Where it all goes wrong is the attempt to get on the REST bandwagon. REST is not the only proper way to write distributed applications. It’s a good way to do it for a specific (through arguably very large) set of distributed applications. One that may not include financial trading or RFID-enabled inventory tracking. More specifically, REST might not be the appropriate approach for all parts of all distributed applications. Working on smoothly connecting the REST and non-REST parts is interesting. Working on forcing the non-REST parts under the REST mantle less so.

By REST here I mean REST-the-architectural-style (narrowly defined), not REST-the-brand (much more broadly defined). Even if your work does not fall under the umbrella of REST-the-architectural-style, you may choose to position it under REST-the-brand as a pragmatic calculation (like a police department might pragmatically include a plasma TV in the “terrorism preparation” accounting category). In the “pros” category, positioning it as REST gives you instantaneous press coverage. In the “cons” category, it gives you instantaneous twitter coverage (of the kind that Steve Jones reports). All in all, it seems like a bad bargain to me if you want to get things done. But Bill Burke (who works with Mark on this) has chosen to accept it: “I really don’t care in the end if any of the architectural principles of Roy’s thesis are broken as long these requirements are met”. As a side note, the REST-* announcement puts this comment by Bill on Roy’s blog in context…

In any case, the way the proposed umbrella organization is shaping up is also giving me concerns. Less about some nefarious intent than about a certain tone-deafness regarding how it comes across. I am not talking about details such as the REST-* moniker, the fact that is just a facade that redirects to or the fact that their blog feed uses RSS rather than Atom (way to get the REST crowd on your side). Rather I am thinking of statements like “Red Hat, as the founder of REST-*, gets a permanent seat on the board. All other board members must be elected by the overall membership once a year”. Which suggests (probably incorrectly) more arrogance than even Microsoft and IBM combined were able to muster when setting up WS-I (modulo the Sun snub). Speaking of Sun, if the JCP (and Sun’s position in it) is the model that RedHat has in mind it might be helpful to point out to them that Sun invented the language after all…

All in all, the specifications Mark and team have in mind may make perfect sense, but they way they are going about it leaves me highly skeptical.

[UPDATE 2009/9/17: More REST-* skepticism. But it looks like Mark and Bill are taking it in stride, acknowledging a less-than-optimal execution and trying to fix things. I doubt this specific initiative can be salvaged, but I think a lot of the goals are good and need to be realized.  Though my intuition is that it is more likely to get done in a piecemeal fashion, distributed between specialized communities (e.g. the Cloud people, the messaging/AMQP people…) who take on, in a very practical way, the portions most relevant to their needs. Whether all the pieces then get pulled together in one place with a nice bow is not important right now.]

[UPDATED 2009/9/18: Changes!]

1 Comment

Filed under Everything, JBoss, Middleware, Protocols, REST, Specs, Standards

Cloud Data Management Interface (CDMI) draft released

Have you developed “Cloud API fatigue” from seeing too many IaaS “Cloud APIs” lately? Are you starting to wonder how many different ways there can possibly be to launch a virtual machine via an HTTP POST? Are you wondering why everybody else seems to equate Cloud computing with on-demand server instances?

If yes, then CDMI will come as a breath of fresh air. This specification (just a draft at this point) is a rare example of a different beast. Coming out of SNIA, it endeavors to standardize the way storage resources are managed and accessed in a Cloud environment. They call this DaaS (Data storage as a Service).

The specification has two components (which may benefit from being separated in two specifications at some point). One (called “control paths”) is an interface to manage a data storage service. That interface is expected to work across many forms of data storage from block storage (like AWS EBS) to filesystems (e.g. NFS) to object stores with a CRUD interface (similar to the WebDAV volumes of the Sun API). It also mentions a “simple table space storage” storage form, but that part is pretty fuzzy.

The second component of CDMI (called “data paths”) only applies to the CRUD object store and it describes a RESTful interface for accessing it. This figure from the specification does a good job of illustrating the two different APIs in the specification (and the different types of storage envisioned).

One of the most interesting sections in the document describes the way in which the authors envision the ability to export the storage resources provisioned/managed through CDMI to other Cloud APIs. They illustrate it in an example involving OCCI (see also this joint white paper). This is very interesting and another sign that we need a shared RESTful resource control framework for Cloud computing as a first layer of standardization. One of the reasons I used to justify this claim two weeks ago was that “there will not be one API that provides control of [all the different forms of Cloud Computing], but they can share a base protocol that will make life a lot easier for developers. These Clouds won’t be isolated, developers will use them as a continuum.” One week later, this draft specification illustrates the point very well.

[As a somewhat related side note, this interesting post about what it takes to provide a large-scale resilient data service (the Google App Engine data store). And more about the Google File System in general.]

1 Comment

Filed under Cloud Computing, Everything, Protocols, REST, Specs, Standards, Utility computing, Virtualization

Toolkits to wrap and bridge Cloud management protocols

Cloud development toolkits like Libcloud (for Python) and jcloud (for Java) have been around for some time, but over the last two months they have been joined by several other open source contenders. They all claim to abstract the on-the-wire Cloud management protocols sufficiently to let you access different Clouds via the same code; while at the same time providing objects in your programming language of choice and saving you the trouble of dealing with on-the-wire messages. By focusing on interoperability, they slot themselves below the larger role of a “Cloud broker” (which also deals with tasks like transfer and choice). Here is the list, starting with the more recent contenders:

DeltaCloud shares the same goal of translating between different Cloud management protocols but they present their own interface as yet another Cloud REST API/protocol rather than a language-specific toolkit. More along the lines of what UCI is trying to do (not sure what’s up with that project, I recorded my skepticism earlier and am still waiting to be pleasantly surprised).

Of course there are also programming toolkits that are specific to one Cloud provider. They are language-specific wrappers around one Cloud management protocol. AWS protocols (EC2, S3, etc…) represent the most common case, for example amazon-ec2 (a Ruby Gem), Power-EC2Dream (in C# which gives it the tantalizing advantage of being invokable via PowerShell) and typica (for Java). For Clouds beyond AWS, check out the various RightScale Ruby Gems.

The main point of this entry was to list the cross-Cloud development toolkits in the bullet list above. But if you’re in the mood for some pontification you can keep reading.

For some reason, what used to be called “protocols” is often called “APIs” in Cloud settings. Witness the Sun Cloud “API” or the vCloud “API” which only define XML formats for on-the-wire messages. I have never heard of CIM/XML over HTTP, WSDM or WS-Management being referred as APIs though they occupy a very similar place. They are usually considered “protocols”.

It’s a just question of definition whether an on-the-wire protocol (rather than a language-specific set of objects/methods) qualifies as an “Application Programming Interface”. It’s not an “interface” in the Java sense of the term. But I can “program” against it so it could go either way. On this blog I have gone along with the “API” term because that seemed widely used, though in verbal conversations I have tended to stick to “protocol”. One problem with “API” is that it pushes you towards mixing the “what” and the “how” and not respecting the protocol/model dichotomy.

Where is becomes relevant is when you start to see language-specific APIs for Cloud control pop-up as listed above. You now have two classes of things called “API” and it gets a bit confusing. Is it time to bring back the “protocol” term for on-the-wire definitions?

As a developer, whether you’re better off eating your Cloud noodles using chopsticks (on-the-wire protocol definitions) or a fork (language-specific APIs) is an important decision that will stay with you and may come back to bit you (e.g. when the interfaces are versioned). There is a place for both of course, but if we are to learn anything from WS-* it’s that we went way too far in the “give me a java stub” direction. Which doesn’t mean there is no room for them, but be careful how far from the wire semantics you get. It become even trickier when your stub tries not jsut to bridge between XML and Java but also to smooth out the differences between several on-the-wire protocols, as the toolkits above do. The hope, of course, is that there will eventually be enough standardization of on-the-wire protocols to make this a moot point.


Filed under Amazon, API, Automation, Cloud Computing, Everything, Google App Engine, Implementation, IT Systems Mgmt, Manageability, Mgmt integration, Open source, Protocols, Utility computing

Separating model from protocol in Cloud APIs

What happened to the separation between the model and the protocol in management APIs? For all the arguments we had in the design of WSDM and WS-Management, this was one fundamental concept that took little discussion before everyone agreed: that the protocol (the interaction model and the on-the-wire shape of the messages used) should be defined in a way that is agnostic to the type of resource being managed (computers, elevators or toasters — the perennial silly example). To this end, WSDM took pains to release MUWS (Management Using Web Services) and MOWS (Management Of Web Services) as two different specifications.

Contrast that to the different Cloud APIs (there is a new one released every other day). If they have one thing in common it is that they happily ignore this principle and tackle protocol concerns alongside the resource model. Here are my guesses as to why that is:

1) It’s a land grad

The goal is not to produce the best long-term API, it’s to be out early, to stake your claim and to gain leverage, so that you can steer the final standard close to your implementation. Editorial niceties like properly factoring the specification are not major concerns, there will be plenty of time for this during the standardization process. In fact, leaving such improvements for the standardization phase is a nice way to make it look like the group is not just rubberstamping, while not changing much that actually impacts your implementation. The good old “give them something insignificant to argue about” trick. It works BTW.

As an example of how rushed some of these submissions can be, did you notice that what VMWare submitted to DMTF this week is the vCloud API Specification v0.8 (a 7-page document that is simply a list of operations), not the accompanying vCloud API programming guide v0.8 which is ten times longer and is the real specification, the place where the operation semantics, payload formats and protocol considerations are actually described and without which the previous document cannot possibly be implemented. Presumably the VMWare team was pressed to release on time for a VMWorld announcement and they came up with this to be able to submit without finishing all the needed editorial work. I assume this will follow soon and in the meantime the DMTF members will retrieve the programming guide from the VMWare site in order to make sense of what was submitted to them.

This kind of rush is not rare in the history of specification submission, even those that have been in the work for a long time . For example, the initial CBE submission by IBM had “IBM Confidential” all over the specification and a mention that one should retrieve the most up to date version from the “Autonomic Computing Problem Determination Offering Team Notes Database” (presumably non-IBMers were supposed to break into the server).

If lack of time is the main reason why all these APIs do not factor out the protocol aspects then I have no problem, there is plenty of time to address it. But I suspect that there may be other reasons, that some may see it as a feature rather than a bug. For example:

2) Anything but WS-*

SOAP-based interfaces (WS-* or WS-DeathStar) have a bad rap and doing anything in the opposite way is a crowd pleaser (well, in the blogosphere at least). Modularity and composition of specifications is a major driving force behind the WS-* work, therefore it is bad and we should make all specifications of the new REST order stand-alone.

3) Keep it simple

A more benevolent way to put it is the concern to keep things simple. If you factor specifications out you put on the developer the burden of assembling the complete documentation, plus you introduce versioning issues between the parts. One API document that fully describes the contract is simpler.

4) We don’t need no stinking’ protocol, we have HTTP

Isn’t this the protocol? Through the magic of REST, all that’s needed is a resource model, right? But if you look in the specifications you see sections about authentication, fault handling, long-lived operations, enumeration of long result sets, etc… Things that have nothing to do with the resource model.

So what?

Why is this confluence of model and protocol in one specification bad? If nothing else, the “keep it simple” argument (#3) above has plenty of merits, doesn’t it? Aren’t WSDM and WS-Management just over-engineered?

They may be, but not because they offer this separation. Consider the following practical benefits of separating the protocol from the model:

1) We can at least agree on one part

Thanks to the “REST is the new black” attitude in Cloud circles, there are lots of commonalities between these various Cloud APIs. Especially the more recent ones, those that I think of as “second generation” APIs: vCloud, Sun API, GoGrid and OCCI (Amazon EC2 is the main “1st generation” Cloud API, back when people weren’t too self-conscious about not just using HTTP but really “doing REST”). As an example of convergence between second generation specifications, see for example, how vCloud and the Sun API both use “202 Accepted” and a dedicated “status” resource to handle long-lived operations. More comparisons here.

Where they differ on such protocol matters, it wouldn’t be hard to modify one’s implementation to use an alternative approach. Things become a lot more sensitive when you touch the resource model, which reflects the actual capabilities of the Cloud management infrastructure. How much flexibility in the network setup? What kind of application provisioning? What affinity/anti-affinity control level? Can I get block-level storage? Etc. Having to implement the other guy’s interface in these matters is not just a matter of glue code, it’s a major product feature. As a result, the resource model is a much more strategic control point than the protocol. Would you rather dictate the terms of a contract or the color of the ink in which it is printed?

That being the case, I suspect that there could be relatively quick and painless agreement on that first layer of the Cloud API: a set of protocol considerations, based on HTTP and REST, that provide a resource control framework with support for security, events, long-running operations, faults, many-as-one semantics, enumeration, etc. Or rather, that if there is to be a “quick and painless” agreement on anything related to Cloud computing standards it can only be on something that is limited to protocol concerns. It doesn’t have to be long and complex. It doesn’t have to be factored in 8 different specifications like WS-* did. It can be just one specification. Keep it simple, ignore all use cases that aren’t related to Cloud Computing. In the end, please call it MUR (Management Using REST)… ;-)

2) Many Clouds, one protocol to rule them all

Whichever Cloud taxonomy strikes your fancy (I am so disappointed that SADIST-PIMP hasn’t caught on), it’s pretty clear that there will not be one kind of Cloud. There will be at least some IaaS, some PaaS and plenty of SaaS. There will not be one API that provides control of them all, but they can share a base protocol that will make life a lot easier for developers. These Clouds won’t be isolated, developers will use them as a continuum.

3) Not just one access model

As much as it makes sense to start from simple and mostly synchronous operations, there will be many different interaction models for Cloud Computing. In addition to the base operations, we may get more of a desired-state/blueprint interaction pattern, based on the same resource model. Or, somewhere in-between, some kind of stored execution flow where modules are passed around rather than individual operations. Also, as the level of automation increases you may want a base framework that is more event-friendly for rapid close-loop management. And there are other considerations involved (like resource monitoring, policies…) not currently covered by these specifications but that can surely reuse the protocol aspects. By factoring out the resource model, you make it possible for these other interaction patterns to emerge in a compatible way.

The current Cloud APIs are not far away from this clean factoring. It would be an easy task to extract protocol considerations as a separate document, in large part due to the fact that REST prevents you from burying the resource model inside convoluted operation semantics. To some extent it’s just a partitioning issue, but the same can be said of many intractable and bloody armed conflicts around the world… Good fences make good neighbors in the world of IT specs too.

[UPDATE: Soon after this entry went to “press” (meaning soon after I pressed the publish button), I noticed this report of a “REST-*” proposal by Mark Little of RedHat/JBOSS. I will reserve judgment until Mark has blogged about it or I have seen some other authoritative description. We may be talking about the same thing here. Or maybe not. The REST-* name surprises me a bit as I would expect opponents of such a proposal to name it just this way. We’ll see.]

[UPDATE 2009/9/6: Apparently I am something like the 26th person to think of the “one protocol/API to rule them all” sentence. We geeks have such a shallow set of shared cultural references it’s scary at times.]

[UPDATED 2009/11/12: Lori MacVittie has a very nice follow-up on this, with examples and interesting analogies. Check it out.]


Filed under API, Automation, Cloud Computing, Everything, IT Systems Mgmt, Manageability, Mgmt integration, Modeling, Protocols, REST, Specs, Standards, Utility computing

VMWare publishes (and submits) vCloud API

VMWare published its vCloud API yesterday (it was previously only available to a few partners) and submitted it to the DMTF, as had been previously announced. So much for my speculations involving IBM.

It may be time to update the Cloud API comparison. After a very quick first pass, vCloud looks quite similar to the Sun Cloud API (that’s a compliment). For example, they both handle long-lived operations via a “202 Accepted” complemented by a resource that represents the progress (“status” for Sun, “task” for vCloud). A very visible (but not critical) difference is the use of JSON (Sun) versus XML (vCloud).

As expected, OVF/OVA is central to vCloud. More once I have read the whole specification.

In any case, things are going to get interesting in the DMTF Cloud incubator. I there a path to adoption?Assuming that Amazon keeps sitting it out, what will the other Cloud vendors with an API (Rackspace, GoGrid, Sun…) do? I doubt they ever had plans/aspirations to own or even drive the standard, but how much are they willing to let VMWare do it? How much does Citrix/Xen want to steer standards versus simply implement them in the context of the Xen Cloud project? What about OGF/OCCI with which the DMTF is supposedly collaborating?How much support is VMWare going to receive from its service provider partners? How much traction does VMWare have with Cisco, HP (server division) and IBM on this? What are the plans at Oracle and Microsoft? Speaking of Microsoft, maybe it will at some point want its standard strategy playbook back. At least when VMWare is done using it.


Filed under API, Application Mgmt, Automation, Cloud Computing, DMTF, Everything, IT Systems Mgmt, Mgmt integration, Protocols, REST, Specs, Standards, Utility computing, Virtualization, VMware

Anthology of blog posts about protocols and data formats

I just finished reading or re-reading a half-dozen great short texts about data formats and protocols, in the XML/RDF space.

I started with this “do we need WADL” post by Joe Gregorio (since the previous entry made me go back to WADL which is used by Rackspace). Under the guise of a Q&A about WADL, Joe’s post disposes of the notion that IDL-based code generation is any good (of course the reference on this topic is Steve’s Alpine paper, but Joe very elegantly captures the gist of it a few sentences). He then explains what it really take to specify a protocol (hint: it’s not just a syntax). This is about WSDL and XSD as much as WADL.

When I reached the point in Joe’s Q&A where he discusses whether one should ever create a new protocol, I remembered a post on this very topic from Tim Bray, which I easily Googled back to life. Two of them actually, one about why you shouldn’t do it and the other about how to do it since he knows his advice will be ignored. There are so many lessons in these that I won’t even attempt to summarize.

Tim’s second piece then delivered me to this excellent article about the various facets of RDF. It’s six years old but still true. Though if it was written today I expect it would add “graph query language” and possibly even “constraint language” as facets of RDF.

While I am at it, I should add to the list this to this bird-eye view of all the XML obstacles that pedestrians run into (I have highlighted this entry in a previous post).

These are all very well written articles by people who think very clearly about the domain. None of them technically taught me anything I didn’t know before, but they definitely helped me clarify my thoughts (and find the words to explain them to others).

We’re not artists. We’re not scientists. We’re not mathematicians. But there is some beauty in computer protocol design too. These writings are museum pieces, in the “lasting/worthwhile” sense of the term (not the “old/outdated” sense that it often has in the computing world). Don’t rush to read them, they are all several years old and have aged very well. Wait until you have the time to read them carefully.

I didn’t set out to create a best-of compilation of writings about protocols and data formats. I just happened to run into these great entries in a 30 minutes period and I was impressed by how much “above average” they all are. Is it luck? Does the topic of computer protocols naturally attract good thinkers and writers? Am I just in a good mood tonight? Who knows.

There must be others, possibly even better. Elliotte Rusty Harold occasionally surfaces one through his not-so-daily “quote of the day“. Suggestions for more articles of this caliber are welcome. A thousand monkeys may not be able to produce Hamlet, but a thousand bloggers may come close to an equivalent of Feynman’s lectures.

[UPDATED 2010/11/12: Over a year later, here’s an addition to this anthology. Stu’s succinct and beautiful explanation of the underlying issues with partial resource update (and REST in general).]

1 Comment

Filed under Articles, Everything, Protocols, RDF, Specs, Standards